Skip to content

These examples illustrate which models, engines, and prediction types are available in censored. As a reminder, in parsnip,

  • the model type differentiates basic modeling approaches, such as random forests, proportional hazards models, etc.,

  • the mode denotes in what kind of modeling context it will be used (here, censored regression), and

  • the computational engine indicates how the model is fit, such as with a specific R package implementation or even methods outside of R like Keras or Stan.

The following examples use the same data set throughout.

bag_tree() models

With the "rpart" engine

We’ll model the survival of lung cancer patients.

  ## ── Attaching packages ──────────────────────────────── tidymodels 1.2.0 ──
  ##  broom        1.0.6       rsample      1.2.1 
  ##  dials        1.2.1       tibble       3.2.1 
  ##  dplyr        1.1.4       tidyr        1.3.1 
  ##  infer        1.0.7       tune         1.2.1 
  ##  modeldata    1.3.0       workflows    1.1.4 
  ##  parsnip      1.2.1       workflowsets 1.1.0 
  ##  purrr        1.0.2       yardstick    1.3.1 
  ##  recipes      1.0.10
  ## ── Conflicts ─────────────────────────────────── tidymodels_conflicts() ──
  ##  purrr::discard() masks scales::discard()
  ##  dplyr::filter()  masks stats::filter()
  ##  dplyr::lag()     masks stats::lag()
  ##  recipes::step()  masks stats::step()
  ##  Use suppressPackageStartupMessages() to eliminate package startup messages
  ## Loading required package: survival
  tidymodels_prefer()
  
  data(cancer)
  
  lung <- lung %>% drop_na()
  lung_train <- lung[-c(1:5), ]
  lung_test <- lung[1:5, ]

We can define the model with specific parameters:

  bt_spec <- 
    bag_tree(cost_complexity = 0) %>%
    set_engine("rpart") %>% 
    set_mode("censored regression") 
  bt_spec
  ## Bagged Decision Tree Model Specification (censored regression)
  ## 
  ## Main Arguments:
  ##   cost_complexity = 0
  ##   min_n = 2
  ## 
  ## Computational engine: rpart

Now we create the model fit object:

  set.seed(1)
  bt_fit <- bt_spec %>% fit(Surv(time, status) ~ ., data = lung_train)
  bt_fit
  ## parsnip model object
  ## 
  ## 
  ## Bagging survival trees with 25 bootstrap replications 
  ## 
  ## Call: bagging.data.frame(formula = Surv(time, status) ~ ., data = data)

The holdout data can be predicted for survival probability at different time points as well as event time.

  predict(
    bt_fit, 
    lung_test, 
    type = "survival", 
    eval_time = c(100, 500, 1000)
  ) %>% 
    slice(1) %>% 
    tidyr::unnest(col = .pred)
  ## # A tibble: 3 × 2
  ##   .eval_time .pred_survival
  ##        <dbl>          <dbl>
  ## 1        100        0.946  
  ## 2        500        0.333  
  ## 3       1000        0.00496
  predict(bt_fit, lung_test, type = "time")
  ## # A tibble: 5 × 1
  ##   .pred_time
  ##        <dbl>
  ## 1        353
  ## 2        293
  ## 3        230
  ## 4        201
  ## 5        268

boost_tree() models

With the "mboost" engine

We’ll model the survival of lung cancer patients.

  library(tidymodels)
  library(censored)
  tidymodels_prefer()
  
  data(cancer)
  
  lung <- lung %>% drop_na()
  lung_train <- lung[-c(1:5), ]
  lung_test <- lung[1:5, ]

We can define the model with specific parameters:

  bt_spec <- 
    boost_tree(trees = 15) %>%
    set_engine("mboost") %>% 
    set_mode("censored regression") 
  bt_spec
  ## Boosted Tree Model Specification (censored regression)
  ## 
  ## Main Arguments:
  ##   trees = 15
  ## 
  ## Computational engine: mboost

Now we create the model fit object:

  set.seed(1)
  bt_fit <- bt_spec %>% fit(Surv(time, status) ~ ., data = lung_train)
  bt_fit
  ## parsnip model object
  ## 
  ## 
  ##     Model-based Boosting
  ## 
  ## Call:
  ## mboost::blackboost(formula = formula, data = data, family = family,     control = mboost::boost_control(mstop = 15), tree_controls = partykit::ctree_control(teststat = "quadratic",         testtype = "Teststatistic", mincriterion = 0, minsplit = 10,         minbucket = 4, maxdepth = 2, saveinfo = FALSE))
  ## 
  ## 
  ##     Cox Partial Likelihood 
  ## 
  ## Loss function:  
  ## 
  ## Number of boosting iterations: mstop = 15 
  ## Step size:  0.1 
  ## Offset:  0 
  ## Number of baselearners:  1

The holdout data can be predicted for survival probability at different time points as well as the linear predictor.

  predict(
    bt_fit, 
    lung_test,
    type = "survival",
    eval_time = c(100, 500, 1000)
  ) %>% 
    slice(1) %>% 
    tidyr::unnest(col = .pred)
  ## # A tibble: 3 × 2
  ##   .eval_time .pred_survival
  ##        <dbl>          <dbl>
  ## 1        100         0.867 
  ## 2        500         0.294 
  ## 3       1000         0.0441
  predict(bt_fit, lung_test, type = "linear_pred")
  ## # A tibble: 5 × 1
  ##   .pred_linear_pred
  ##               <dbl>
  ## 1            0.0823
  ## 2           -0.455 
  ## 3            0.0661
  ## 4           -0.724 
  ## 5           -0.724

decision_tree() models

With the "rpart" engine

We’ll model the survival of lung cancer patients.

  library(tidymodels)
  library(censored)
  tidymodels_prefer()
  
  data(cancer)
  
  lung <- lung %>% drop_na()
  lung_train <- lung[-c(1:5), ]
  lung_test <- lung[1:5, ]

We can define the model with specific parameters:

  dt_spec <- 
    decision_tree(cost_complexity = 0) %>%
    set_engine("rpart") %>% 
    set_mode("censored regression") 
  dt_spec
  ## Decision Tree Model Specification (censored regression)
  ## 
  ## Main Arguments:
  ##   cost_complexity = 0
  ## 
  ## Computational engine: rpart

Now we create the model fit object:

  set.seed(1)
  dt_fit <- dt_spec %>% fit(Surv(time, status) ~ ., data = lung_train)
  dt_fit
  ## parsnip model object
  ## 
  ## $rpart
  ## n= 162 
  ## 
  ## node), split, n, deviance, yval
  ##       * denotes terminal node
  ## 
  ##   1) root 162 217.089100 1.0000000  
  ##     2) ph.ecog< 1.5 125 146.610800 0.8606149  
  ##       4) pat.karno>=65 117 134.248900 0.8042241  
  ##         8) sex>=1.5 47  58.371280 0.5920010  
  ##          16) inst>=12.5 16  17.696750 0.3469493 *
  ##          17) inst< 12.5 31  36.986020 0.7601739  
  ##            34) ph.ecog< 0.5 14  21.869860 0.4765888 *
  ##            35) ph.ecog>=0.5 17  12.197510 0.9977683 *
  ##         9) sex< 1.5 70  71.035080 0.9843711  
  ##          18) wt.loss< -0.5 10   7.608541 0.6466464 *
  ##          19) wt.loss>=-0.5 60  61.204860 1.0855380  
  ##            38) inst< 18.5 51  52.890560 0.9994210  
  ##              76) pat.karno< 85 27  30.835530 0.8204259  
  ##               152) age< 65.5 16  16.499450 0.6396414 *
  ##               153) age>=65.5 11  12.211210 1.2318540 *
  ##              77) pat.karno>=85 24  20.327560 1.2436570  
  ##               154) pat.karno>=95 10   6.634957 0.7568023 *
  ##               155) pat.karno< 95 14  10.631990 1.6387150 *
  ##            39) inst>=18.5 9   6.360874 1.6566500 *
  ##       5) pat.karno< 65 8   5.011986 2.2376180 *
  ##     3) ph.ecog>=1.5 37  59.992750 1.7157640  
  ##       6) wt.loss>=21 10  10.703230 0.6678083 *
  ##       7) wt.loss< 21 27  29.918520 3.1500170  
  ##        14) sex>=1.5 12   7.395091 1.9066160 *
  ##        15) sex< 1.5 15  16.563010 4.5917120 *
  ## 
  ## $survfit
  ## 
  ## Call: prodlim::prodlim(formula = form, data = data)
  ## Stratified Kaplan-Meier estimator for the conditional event time survival function
  ## Discrete predictor variable: rpartFactor (0.34694933272507, 0.47658881486553, 0.639641354557786, 0.646646427745816, 0.667808261569019, 0.756802251840104, 0.997768280401696, 1.23185367065451, 1.638714591616, 1.65664969973098, 1.90661557969861, 2.23761769770399, 4.59171172488878)
  ## 
  ## Right-censored response of a survival model
  ## 
  ## No.Observations: 162 
  ## 
  ## Pattern:
  ##                 Freq
  ##  event          116 
  ##  right.censored 46  
  ## 
  ## $levels
  ##  [1] "0.34694933272507"  "0.47658881486553"  "0.639641354557786"
  ##  [4] "0.646646427745816" "0.667808261569019" "0.756802251840104"
  ##  [7] "0.997768280401696" "1.23185367065451"  "1.638714591616"   
  ## [10] "1.65664969973098"  "1.90661557969861"  "2.23761769770399" 
  ## [13] "4.59171172488878" 
  ## 
  ## attr(,"class")
  ## [1] "pecRpart"

The holdout data can be predicted for survival probability at different time points as well as event time.

  predict(
    dt_fit, 
    lung_test, 
    type = "survival",
    eval_time = c(100, 500, 1000)
  ) %>% 
    slice(1) %>% 
    tidyr::unnest(col = .pred)
  ## # A tibble: 3 × 2
  ##   .eval_time .pred_survival
  ##        <dbl>          <dbl>
  ## 1        100          0.786
  ## 2        500          0.143
  ## 3       1000         NA
  predict(dt_fit, lung_test, type = "time")
  ## # A tibble: 5 × 1
  ##   .pred_time
  ##        <dbl>
  ## 1       1.64
  ## 2       2.24
  ## 3       1.23
  ## 4       1.91
  ## 5       1.91
With the "partykit" engine

We’ll model the survival of lung cancer patients.

  library(tidymodels)
  library(censored)
  tidymodels_prefer()
  
  data(cancer)
  
  lung <- lung %>% drop_na()
  lung_train <- lung[-c(1:5), ]
  lung_test <- lung[1:5, ]

We can define the model with specific parameters:

  dt_spec <- 
    decision_tree() %>%
    set_engine("partykit") %>% 
    set_mode("censored regression") 
  dt_spec
  ## Decision Tree Model Specification (censored regression)
  ## 
  ## Computational engine: partykit

Now we create the model fit object:

  set.seed(1)
  dt_fit <- dt_spec %>% fit(Surv(time, status) ~ ., data = lung_train)
  dt_fit
  ## parsnip model object
  ## 
  ## 
  ## Model formula:
  ## Surv(time, status) ~ inst + age + sex + ph.ecog + ph.karno + 
  ##     pat.karno + meal.cal + wt.loss
  ## 
  ## Fitted party:
  ## [1] root
  ## |   [2] ph.ecog <= 1: 363.000 (n = 125)
  ## |   [3] ph.ecog > 1
  ## |   |   [4] wt.loss <= 20
  ## |   |   |   [5] sex <= 1: 65.000 (n = 15)
  ## |   |   |   [6] sex > 1: 201.000 (n = 12)
  ## |   |   [7] wt.loss > 20: 524.000 (n = 10)
  ## 
  ## Number of inner nodes:    3
  ## Number of terminal nodes: 4

The holdout data can be predicted for survival probability at different time points as well as event time.

  predict(
    dt_fit, 
    lung_test, 
    type = "survival",
    eval_time = c(100, 500, 1000)
  ) %>% 
    slice(1) %>% 
    tidyr::unnest(col = .pred)
  ## # A tibble: 3 × 2
  ##   .eval_time .pred_survival
  ##        <dbl>          <dbl>
  ## 1        100         0.896 
  ## 2        500         0.334 
  ## 3       1000         0.0719
  predict(dt_fit, lung_test, type = "time")
  ## # A tibble: 5 × 1
  ##   .pred_time
  ##        <dbl>
  ## 1        363
  ## 2        363
  ## 3        363
  ## 4        201
  ## 5        201

proportional_hazards() models

With the "survival" engine

We’ll model the survival of lung cancer patients.

  library(tidymodels)
  library(censored)
  tidymodels_prefer()
  
  data(cancer)
  
  lung <- lung %>% drop_na()
  lung_train <- lung[-c(1:5), ]
  lung_test <- lung[1:5, ]

We can define the model with specific parameters:

  ph_spec <- 
    proportional_hazards() %>%
    set_engine("survival") %>% 
    set_mode("censored regression") 
  ph_spec
  ## Proportional Hazards Model Specification (censored regression)
  ## 
  ## Computational engine: survival

Now we create the model fit object:

  set.seed(1)
  ph_fit <- ph_spec %>% fit(Surv(time, status) ~ ., data = lung_train)
  ph_fit
  ## parsnip model object
  ## 
  ## Call:
  ## survival::coxph(formula = Surv(time, status) ~ ., data = data, 
  ##     model = TRUE, x = TRUE)
  ## 
  ##                 coef  exp(coef)   se(coef)      z       p
  ## inst      -0.0291726  0.9712488  0.0131293 -2.222 0.02629
  ## age        0.0146341  1.0147417  0.0119705  1.223 0.22151
  ## sex       -0.5977137  0.5500678  0.2051326 -2.914 0.00357
  ## ph.ecog    0.7507039  2.1184906  0.2536100  2.960 0.00308
  ## ph.karno   0.0137315  1.0138262  0.0132752  1.034 0.30096
  ## pat.karno -0.0082098  0.9918238  0.0082560 -0.994 0.32002
  ## meal.cal  -0.0001233  0.9998767  0.0002841 -0.434 0.66435
  ## wt.loss   -0.0188464  0.9813301  0.0082051 -2.297 0.02162
  ## 
  ## Likelihood ratio test=32.61  on 8 df, p=7.224e-05
  ## n= 162, number of events= 116

The holdout data can be predicted for survival probability at different time points as well as the linear predictor and event time.

  predict(
    ph_fit, 
    lung_test, 
    type = "survival",
    eval_time = c(100, 500, 1000)
  ) %>% 
    slice(1) %>% 
    tidyr::unnest(col = .pred)
  ## # A tibble: 3 × 2
  ##   .eval_time .pred_survival
  ##        <dbl>          <dbl>
  ## 1        100         0.903 
  ## 2        500         0.410 
  ## 3       1000         0.0953
  predict(ph_fit, lung_test, type = "linear_pred")
  ## # A tibble: 5 × 1
  ##   .pred_linear_pred
  ##               <dbl>
  ## 1            -0.373
  ## 2            -1.24 
  ## 3            -0.852
  ## 4            -1.33 
  ## 5            -1.11
  predict(ph_fit, lung_test, type = "time")
  ## # A tibble: 5 × 1
  ##   .pred_time
  ##        <dbl>
  ## 1       448.
  ## 2       262.
  ## 3       337.
  ## 4       246.
  ## 5       286.
With the "glmnet" engine

We’ll model the survival of lung cancer patients.

  library(tidymodels)
  library(censored)
  tidymodels_prefer()
  
  data(cancer)
  
  lung <- lung %>% drop_na()
  lung_train <- lung[-c(1:5), ]
  lung_test <- lung[1:5, ]

We can define the model with specific parameters:

  ph_spec <- 
    proportional_hazards(penalty = 0.1) %>%
    set_engine("glmnet") %>% 
    set_mode("censored regression") 
  ph_spec
  ## Proportional Hazards Model Specification (censored regression)
  ## 
  ## Main Arguments:
  ##   penalty = 0.1
  ## 
  ## Computational engine: glmnet

Now we create the model fit object:

  set.seed(1)
  ph_fit <- ph_spec %>% fit(Surv(time, status) ~ ., data = lung_train)
  ph_fit
  ## parsnip model object
  ## 
  ## 
  ## Call:  glmnet::glmnet(x = data_obj$x, y = data_obj$y, family = "cox",      weights = weights, alpha = alpha, lambda = lambda) 
  ## 
  ##    Df %Dev   Lambda
  ## 1   0 0.00 0.221000
  ## 2   1 0.23 0.201400
  ## 3   2 0.43 0.183500
  ## 4   2 0.72 0.167200
  ## 5   2 0.96 0.152300
  ## 6   2 1.17 0.138800
  ## 7   2 1.33 0.126500
  ## 8   3 1.48 0.115200
  ## 9   4 1.61 0.105000
  ## 10  4 1.74 0.095660
  ## 11  5 1.87 0.087160
  ## 12  6 2.02 0.079420
  ## 13  6 2.22 0.072370
  ## 14  6 2.40 0.065940
  ## 15  6 2.54 0.060080
  ## 16  6 2.66 0.054740
  ## 17  6 2.77 0.049880
  ## 18  6 2.85 0.045450
  ## 19  6 2.92 0.041410
  ## 20  6 2.98 0.037730
  ## 21  7 3.04 0.034380
  ## 22  7 3.08 0.031330
  ## 23  7 3.12 0.028540
  ## 24  7 3.16 0.026010
  ## 25  7 3.19 0.023700
  ## 26  7 3.21 0.021590
  ## 27  8 3.23 0.019670
  ## 28  8 3.27 0.017930
  ## 29  8 3.30 0.016330
  ## 30  8 3.32 0.014880
  ## 31  8 3.34 0.013560
  ## 32  8 3.36 0.012360
  ## 33  8 3.37 0.011260
  ## 34  8 3.39 0.010260
  ## 35  8 3.40 0.009346
  ## 36  8 3.40 0.008516
  ## 37  8 3.41 0.007760
  ## 38  8 3.42 0.007070
  ## 39  8 3.42 0.006442
  ## 40  8 3.43 0.005870
  ## 41  8 3.43 0.005348
  ## 42  8 3.43 0.004873
  ## 43  8 3.43 0.004440
  ## 44  8 3.44 0.004046
  ## 45  8 3.44 0.003686
  ## 46  8 3.44 0.003359
  ## 47  8 3.44 0.003061
  ## 48  8 3.44 0.002789
  ## 49  8 3.44 0.002541
  ## 50  8 3.44 0.002315
  ## The training data has been saved for prediction.

The holdout data can be predicted for survival probability at different time points as well as the linear predictor.

  predict(
    ph_fit, 
    lung_test, 
    type = "survival",
    eval_time = c(100, 500, 1000)
  ) %>% 
    slice(1) %>% 
    tidyr::unnest(col = .pred)
  ## # A tibble: 3 × 2
  ##   .eval_time .pred_survival
  ##        <dbl>          <dbl>
  ## 1        100         0.874 
  ## 2        500         0.349 
  ## 3       1000         0.0804
  predict(ph_fit, lung_test, type = "linear_pred")
  ## # A tibble: 5 × 1
  ##   .pred_linear_pred
  ##               <dbl>
  ## 1         0.272    
  ## 2         0.0000798
  ## 3         0.00575  
  ## 4        -0.0211   
  ## 5        -0.00345

rand_forest() models

With the "partykit" engine

We’ll model the survival of lung cancer patients.

  library(tidymodels)
  library(censored)
  tidymodels_prefer()
  
  data(cancer)
  
  lung <- lung %>% drop_na()
  lung_train <- lung[-c(1:5), ]
  lung_test <- lung[1:5, ]

We can define the model with specific parameters:

  rf_spec <- 
    rand_forest(trees = 200) %>%
    set_engine("partykit") %>% 
    set_mode("censored regression") 
  rf_spec
  ## Random Forest Model Specification (censored regression)
  ## 
  ## Main Arguments:
  ##   trees = 200
  ## 
  ## Computational engine: partykit

Now we create the model fit object:

  set.seed(1)
  rf_fit <- rf_spec %>% fit(Surv(time, status) ~ ., data = lung_train)
  rf_fit
  ## parsnip model object
  ## 
  ## $nodes
  ## $nodes[[1]]
  ## [1] root
  ## |   [2] V4 <= 1
  ## |   |   [3] V5 <= 1
  ## |   |   |   [4] V3 <= 64
  ## |   |   |   |   [5] V8 <= 1025 *
  ## |   |   |   |   [6] V8 > 1025 *
  ## |   |   |   [7] V3 > 64 *
  ## |   |   [8] V5 > 1 *
  ## |   [9] V4 > 1
  ## |   |   [10] V5 <= 1
  ## |   |   |   [11] V5 <= 0 *
  ## |   |   |   [12] V5 > 0 *
  ## |   |   [13] V5 > 1 *
  ## 
  ## $nodes[[2]]
  ## [1] root
  ## |   [2] V5 <= 0
  ## |   |   [3] V4 <= 1 *
  ## |   |   [4] V4 > 1 *
  ## |   [5] V5 > 0
  ## |   |   [6] V5 <= 1
  ## |   |   |   [7] V9 <= 19
  ## |   |   |   |   [8] V4 <= 1
  ## |   |   |   |   |   [9] V9 <= 6 *
  ## |   |   |   |   |   [10] V9 > 6 *
  ## |   |   |   |   [11] V4 > 1 *
  ## |   |   |   [12] V9 > 19 *
  ## |   |   [13] V5 > 1
  ## |   |   |   [14] V4 <= 1 *
  ## |   |   |   [15] V4 > 1 *
  ## 
  ## $nodes[[3]]
  ## [1] root
  ## |   [2] V5 <= 1
  ## |   |   [3] V5 <= 0
  ## |   |   |   [4] V2 <= 5 *
  ## |   |   |   [5] V2 > 5
  ## |   |   |   |   [6] V6 <= 90 *
  ## |   |   |   |   [7] V6 > 90 *
  ## |   |   [8] V5 > 0
  ## |   |   |   [9] V6 <= 80
  ## |   |   |   |   [10] V7 <= 70 *
  ## |   |   |   |   [11] V7 > 70
  ## |   |   |   |   |   [12] V2 <= 10 *
  ## |   |   |   |   |   [13] V2 > 10 *
  ## |   |   |   [14] V6 > 80 *
  ## |   [15] V5 > 1
  ## |   |   [16] V6 <= 60 *
  ## |   |   [17] V6 > 60 *
  ## 
  ## $nodes[[4]]
  ## [1] root
  ## |   [2] V5 <= 0
  ## |   |   [3] V7 <= 80 *
  ## |   |   [4] V7 > 80 *
  ## |   [5] V5 > 0
  ## |   |   [6] V4 <= 1
  ## |   |   |   [7] V6 <= 80
  ## |   |   |   |   [8] V3 <= 65 *
  ## |   |   |   |   [9] V3 > 65
  ## |   |   |   |   |   [10] V9 <= 7 *
  ## |   |   |   |   |   [11] V9 > 7 *
  ## |   |   |   [12] V6 > 80 *
  ## |   |   [13] V4 > 1
  ## |   |   |   [14] V5 <= 1 *
  ## |   |   |   [15] V5 > 1 *
  ## 
  ## $nodes[[5]]
  ## [1] root
  ## |   [2] V5 <= 1
  ## |   |   [3] V4 <= 1
  ## |   |   |   [4] V6 <= 80
  ## |   |   |   |   [5] V7 <= 80 *
  ## |   |   |   |   [6] V7 > 80 *
  ## |   |   |   [7] V6 > 80
  ## |   |   |   |   [8] V9 <= 12
  ## |   |   |   |   |   [9] V2 <= 11 *
  ## |   |   |   |   |   [10] V2 > 11 *
  ## |   |   |   |   [11] V9 > 12 *
  ## |   |   [12] V4 > 1
  ## |   |   |   [13] V3 <= 53 *
  ## |   |   |   [14] V3 > 53
  ## |   |   |   |   [15] V3 <= 64 *
  ## |   |   |   |   [16] V3 > 64 *
  ## |   [17] V5 > 1
  ## |   |   [18] V8 <= 925 *
  ## |   |   [19] V8 > 925 *
  ## 
  ## $nodes[[6]]
  ## [1] root
  ## |   [2] V4 <= 1
  ## |   |   [3] V6 <= 80
  ## |   |   |   [4] V8 <= 613 *
  ## |   |   |   [5] V8 > 613
  ## |   |   |   |   [6] V2 <= 10 *
  ## |   |   |   |   [7] V2 > 10 *
  ## |   |   [8] V6 > 80
  ## |   |   |   [9] V8 <= 875 *
  ## |   |   |   [10] V8 > 875
  ## |   |   |   |   [11] V9 <= 2 *
  ## |   |   |   |   [12] V9 > 2 *
  ## |   [13] V4 > 1
  ## |   |   [14] V6 <= 70 *
  ## |   |   [15] V6 > 70
  ## |   |   |   [16] V2 <= 11 *
  ## |   |   |   [17] V2 > 11 *
  ## 
  ## $nodes[[7]]
  ## [1] root
  ## |   [2] V7 <= 60 *
  ## |   [3] V7 > 60
  ## |   |   [4] V3 <= 74
  ## |   |   |   [5] V7 <= 90
  ## |   |   |   |   [6] V5 <= 0 *
  ## |   |   |   |   [7] V5 > 0
  ## |   |   |   |   |   [8] V7 <= 70 *
  ## |   |   |   |   |   [9] V7 > 70
  ## |   |   |   |   |   |   [10] V9 <= 4 *
  ## |   |   |   |   |   |   [11] V9 > 4 *
  ## |   |   |   [12] V7 > 90 *
  ## |   |   [13] V3 > 74 *
  ## 
  ## $nodes[[8]]
  ## [1] root
  ## |   [2] V5 <= 1
  ## |   |   [3] V3 <= 64
  ## |   |   |   [4] V4 <= 1
  ## |   |   |   |   [5] V5 <= 0 *
  ## |   |   |   |   [6] V5 > 0 *
  ## |   |   |   [7] V4 > 1
  ## |   |   |   |   [8] V9 <= 6 *
  ## |   |   |   |   [9] V9 > 6 *
  ## |   |   [10] V3 > 64
  ## |   |   |   [11] V7 <= 80 *
  ## |   |   |   [12] V7 > 80 *
  ## |   [13] V5 > 1
  ## |   |   [14] V4 <= 1 *
  ## |   |   [15] V4 > 1 *
  ## 
  ## $nodes[[9]]
  ## [1] root
  ## |   [2] V4 <= 1
  ## |   |   [3] V6 <= 80
  ## |   |   |   [4] V9 <= 20
  ## |   |   |   |   [5] V6 <= 70 *
  ## |   |   |   |   [6] V6 > 70 *
  ## |   |   |   [7] V9 > 20 *
  ## |   |   [8] V6 > 80
  ## |   |   |   [9] V7 <= 80 *
  ## |   |   |   [10] V7 > 80 *
  ## |   [11] V4 > 1
  ## |   |   [12] V7 <= 90
  ## |   |   |   [13] V9 <= 3 *
  ## |   |   |   [14] V9 > 3 *
  ## |   |   [15] V7 > 90 *
  ## 
  ## $nodes[[10]]
  ## [1] root
  ## |   [2] V5 <= 0
  ## |   |   [3] V3 <= 64
  ## |   |   |   [4] V9 <= 3 *
  ## |   |   |   [5] V9 > 3 *
  ## |   |   [6] V3 > 64 *
  ## |   [7] V5 > 0
  ## |   |   [8] V9 <= 27
  ## |   |   |   [9] V5 <= 1
  ## |   |   |   |   [10] V9 <= 14
  ## |   |   |   |   |   [11] V4 <= 1 *
  ## |   |   |   |   |   [12] V4 > 1 *
  ## |   |   |   |   [13] V9 > 14 *
  ## |   |   |   [14] V5 > 1 *
  ## |   |   [15] V9 > 27 *
  ## 
  ## $nodes[[11]]
  ## [1] root
  ## |   [2] V5 <= 1
  ## |   |   [3] V7 <= 90
  ## |   |   |   [4] V7 <= 70 *
  ## |   |   |   [5] V7 > 70
  ## |   |   |   |   [6] V3 <= 70
  ## |   |   |   |   |   [7] V7 <= 80 *
  ## |   |   |   |   |   [8] V7 > 80
  ## |   |   |   |   |   |   [9] V3 <= 61 *
  ## |   |   |   |   |   |   [10] V3 > 61 *
  ## |   |   |   |   [11] V3 > 70 *
  ## |   |   [12] V7 > 90 *
  ## |   [13] V5 > 1
  ## |   |   [14] V4 <= 1 *
  ## |   |   [15] V4 > 1 *
  ## 
  ## $nodes[[12]]
  ## [1] root
  ## |   [2] V2 <= 21
  ## |   |   [3] V7 <= 60 *
  ## |   |   [4] V7 > 60
  ## |   |   |   [5] V6 <= 70 *
  ## |   |   |   [6] V6 > 70
  ## |   |   |   |   [7] V7 <= 90
  ## |   |   |   |   |   [8] V5 <= 0 *
  ## |   |   |   |   |   [9] V5 > 0
  ## |   |   |   |   |   |   [10] V9 <= 14
  ## |   |   |   |   |   |   |   [11] V7 <= 80 *
  ## |   |   |   |   |   |   |   [12] V7 > 80 *
  ## |   |   |   |   |   |   [13] V9 > 14 *
  ## |   |   |   |   [14] V7 > 90 *
  ## |   [15] V2 > 21 *
  ## 
  ## $nodes[[13]]
  ## [1] root
  ## |   [2] V4 <= 1
  ## |   |   [3] V7 <= 60 *
  ## |   |   [4] V7 > 60
  ## |   |   |   [5] V5 <= 0 *
  ## |   |   |   [6] V5 > 0
  ## |   |   |   |   [7] V3 <= 60 *
  ## |   |   |   |   [8] V3 > 60
  ## |   |   |   |   |   [9] V7 <= 70 *
  ## |   |   |   |   |   [10] V7 > 70 *
  ## |   [11] V4 > 1
  ## |   |   [12] V5 <= 0 *
  ## |   |   [13] V5 > 0
  ## |   |   |   [14] V5 <= 1 *
  ## |   |   |   [15] V5 > 1 *
  ## 
  ## $nodes[[14]]
  ## [1] root
  ## |   [2] V4 <= 1
  ## |   |   [3] V5 <= 1
  ## |   |   |   [4] V3 <= 53 *
  ## |   |   |   [5] V3 > 53
  ## |   |   |   |   [6] V9 <= 14
  ## |   |   |   |   |   [7] V9 <= 2 *
  ## |   |   |   |   |   [8] V9 > 2 *
  ## |   |   |   |   [9] V9 > 14 *
  ## |   |   [10] V5 > 1 *
  ## |   [11] V4 > 1
  ## |   |   [12] V6 <= 80
  ## |   |   |   [13] V5 <= 1 *
  ## |   |   |   [14] V5 > 1 *
  ## |   |   [15] V6 > 80
  ## |   |   |   [16] V5 <= 0 *
  ## |   |   |   [17] V5 > 0 *
  ## 
  ## $nodes[[15]]
  ## [1] root
  ## |   [2] V7 <= 60 *
  ## |   [3] V7 > 60
  ## |   |   [4] V5 <= 1
  ## |   |   |   [5] V4 <= 1
  ## |   |   |   |   [6] V8 <= 1275
  ## |   |   |   |   |   [7] V3 <= 59 *
  ## |   |   |   |   |   [8] V3 > 59
  ## |   |   |   |   |   |   [9] V5 <= 0 *
  ## |   |   |   |   |   |   [10] V5 > 0 *
  ## |   |   |   |   [11] V8 > 1275 *
  ## |   |   |   [12] V4 > 1
  ## |   |   |   |   [13] V6 <= 90
  ## |   |   |   |   |   [14] V8 <= 875 *
  ## |   |   |   |   |   [15] V8 > 875 *
  ## |   |   |   |   [16] V6 > 90 *
  ## |   |   [17] V5 > 1 *
  ## 
  ## $nodes[[16]]
  ## [1] root
  ## |   [2] V7 <= 60
  ## |   |   [3] V9 <= 8 *
  ## |   |   [4] V9 > 8 *
  ## |   [5] V7 > 60
  ## |   |   [6] V5 <= 1
  ## |   |   |   [7] V5 <= 0
  ## |   |   |   |   [8] V6 <= 90 *
  ## |   |   |   |   [9] V6 > 90 *
  ## |   |   |   [10] V5 > 0
  ## |   |   |   |   [11] V4 <= 1
  ## |   |   |   |   |   [12] V6 <= 80 *
  ## |   |   |   |   |   [13] V6 > 80 *
  ## |   |   |   |   [14] V4 > 1 *
  ## |   |   [15] V5 > 1 *
  ## 
  ## $nodes[[17]]
  ## [1] root
  ## |   [2] V5 <= 1
  ## |   |   [3] V4 <= 1
  ## |   |   |   [4] V9 <= 10
  ## |   |   |   |   [5] V5 <= 0 *
  ## |   |   |   |   [6] V5 > 0 *
  ## |   |   |   [7] V9 > 10 *
  ## |   |   [8] V4 > 1
  ## |   |   |   [9] V6 <= 80 *
  ## |   |   |   [10] V6 > 80 *
  ## |   [11] V5 > 1
  ## |   |   [12] V9 <= 10 *
  ## |   |   [13] V9 > 10 *
  ## 
  ## $nodes[[18]]
  ## [1] root
  ## |   [2] V5 <= 1
  ## |   |   [3] V3 <= 52 *
  ## |   |   [4] V3 > 52
  ## |   |   |   [5] V5 <= 0
  ## |   |   |   |   [6] V6 <= 90 *
  ## |   |   |   |   [7] V6 > 90 *
  ## |   |   |   [8] V5 > 0
  ## |   |   |   |   [9] V4 <= 1
  ## |   |   |   |   |   [10] V3 <= 66 *
  ## |   |   |   |   |   [11] V3 > 66 *
  ## |   |   |   |   [12] V4 > 1 *
  ## |   [13] V5 > 1
  ## |   |   [14] V9 <= 11 *
  ## |   |   [15] V9 > 11 *
  ## 
  ## $nodes[[19]]
  ## [1] root
  ## |   [2] V5 <= 0
  ## |   |   [3] V9 <= 3 *
  ## |   |   [4] V9 > 3 *
  ## |   [5] V5 > 0
  ## |   |   [6] V9 <= 27
  ## |   |   |   [7] V5 <= 1
  ## |   |   |   |   [8] V7 <= 80
  ## |   |   |   |   |   [9] V7 <= 70 *
  ## |   |   |   |   |   [10] V7 > 70 *
  ## |   |   |   |   [11] V7 > 80 *
  ## |   |   |   [12] V5 > 1 *
  ## |   |   [13] V9 > 27 *
  ## 
  ## $nodes[[20]]
  ## [1] root
  ## |   [2] V7 <= 70
  ## |   |   [3] V9 <= 24
  ## |   |   |   [4] V6 <= 70 *
  ## |   |   |   [5] V6 > 70 *
  ## |   |   [6] V9 > 24 *
  ## |   [7] V7 > 70
  ## |   |   [8] V4 <= 1
  ## |   |   |   [9] V5 <= 0 *
  ## |   |   |   [10] V5 > 0
  ## |   |   |   |   [11] V9 <= 1 *
  ## |   |   |   |   [12] V9 > 1 *
  ## |   |   [13] V4 > 1
  ## |   |   |   [14] V7 <= 90 *
  ## |   |   |   [15] V7 > 90 *
  ## 
  ## $nodes[[21]]
  ## [1] root
  ## |   [2] V5 <= 1
  ## |   |   [3] V3 <= 64
  ## |   |   |   [4] V8 <= 1060
  ## |   |   |   |   [5] V5 <= 0 *
  ## |   |   |   |   [6] V5 > 0 *
  ## |   |   |   [7] V8 > 1060
  ## |   |   |   |   [8] V6 <= 90 *
  ## |   |   |   |   [9] V6 > 90 *
  ## |   |   [10] V3 > 64
  ## |   |   |   [11] V7 <= 80 *
  ## |   |   |   [12] V7 > 80 *
  ## |   [13] V5 > 1
  ## |   |   [14] V9 <= 20 *
  ## |   |   [15] V9 > 20 *
  ## 
  ## $nodes[[22]]
  ## [1] root
  ## |   [2] V5 <= 1
  ## |   |   [3] V3 <= 64
  ## |   |   |   [4] V5 <= 0 *
  ## |   |   |   [5] V5 > 0
  ## |   |   |   |   [6] V4 <= 1
  ## |   |   |   |   |   [7] V9 <= 10 *
  ## |   |   |   |   |   [8] V9 > 10 *
  ## |   |   |   |   [9] V4 > 1 *
  ## |   |   [10] V3 > 64
  ## |   |   |   [11] V6 <= 80 *
  ## |   |   |   [12] V6 > 80 *
  ## |   [13] V5 > 1
  ## |   |   [14] V9 <= 11 *
  ## |   |   [15] V9 > 11 *
  ## 
  ## $nodes[[23]]
  ## [1] root
  ## |   [2] V4 <= 1
  ## |   |   [3] V9 <= 20
  ## |   |   |   [4] V6 <= 70 *
  ## |   |   |   [5] V6 > 70
  ## |   |   |   |   [6] V2 <= 4 *
  ## |   |   |   |   [7] V2 > 4
  ## |   |   |   |   |   [8] V9 <= 5 *
  ## |   |   |   |   |   [9] V9 > 5 *
  ## |   |   [10] V9 > 20 *
  ## |   [11] V4 > 1
  ## |   |   [12] V5 <= 0 *
  ## |   |   [13] V5 > 0
  ## |   |   |   [14] V2 <= 12 *
  ## |   |   |   [15] V2 > 12 *
  ## 
  ## $nodes[[24]]
  ## [1] root
  ## |   [2] V7 <= 60
  ## |   |   [3] V9 <= 13 *
  ## |   |   [4] V9 > 13 *
  ## |   [5] V7 > 60
  ## |   |   [6] V3 <= 64
  ## |   |   |   [7] V8 <= 1150
  ## |   |   |   |   [8] V8 <= 925
  ## |   |   |   |   |   [9] V8 <= 768 *
  ## |   |   |   |   |   [10] V8 > 768 *
  ## |   |   |   |   [11] V8 > 925 *
  ## |   |   |   [12] V8 > 1150 *
  ## |   |   [13] V3 > 64
  ## |   |   |   [14] V7 <= 80 *
  ## |   |   |   [15] V7 > 80 *
  ## 
  ## $nodes[[25]]
  ## [1] root
  ## |   [2] V4 <= 1
  ## |   |   [3] V5 <= 1
  ## |   |   |   [4] V7 <= 70 *
  ## |   |   |   [5] V7 > 70
  ## |   |   |   |   [6] V5 <= 0 *
  ## |   |   |   |   [7] V5 > 0 *
  ## |   |   [8] V5 > 1 *
  ## |   [9] V4 > 1
  ## |   |   [10] V9 <= 3 *
  ## |   |   [11] V9 > 3 *
  ## 
  ## $nodes[[26]]
  ## [1] root
  ## |   [2] V5 <= 1
  ## |   |   [3] V5 <= 0
  ## |   |   |   [4] V3 <= 64
  ## |   |   |   |   [5] V7 <= 90 *
  ## |   |   |   |   [6] V7 > 90 *
  ## |   |   |   [7] V3 > 64 *
  ## |   |   [8] V5 > 0
  ## |   |   |   [9] V6 <= 80
  ## |   |   |   |   [10] V2 <= 13
  ## |   |   |   |   |   [11] V7 <= 70 *
  ## |   |   |   |   |   [12] V7 > 70 *
  ## |   |   |   |   [13] V2 > 13 *
  ## |   |   |   [14] V6 > 80 *
  ## |   [15] V5 > 1
  ## |   |   [16] V9 <= 20 *
  ## |   |   [17] V9 > 20 *
  ## 
  ## $nodes[[27]]
  ## [1] root
  ## |   [2] V4 <= 1
  ## |   |   [3] V5 <= 1
  ## |   |   |   [4] V7 <= 80
  ## |   |   |   |   [5] V3 <= 66 *
  ## |   |   |   |   [6] V3 > 66 *
  ## |   |   |   [7] V7 > 80
  ## |   |   |   |   [8] V8 <= 1025 *
  ## |   |   |   |   [9] V8 > 1025 *
  ## |   |   [10] V5 > 1 *
  ## |   [11] V4 > 1
  ## |   |   [12] V9 <= -1 *
  ## |   |   [13] V9 > -1
  ## |   |   |   [14] V6 <= 70 *
  ## |   |   |   [15] V6 > 70
  ## |   |   |   |   [16] V7 <= 80 *
  ## |   |   |   |   [17] V7 > 80 *
  ## 
  ## $nodes[[28]]
  ## [1] root
  ## |   [2] V7 <= 90
  ## |   |   [3] V5 <= 1
  ## |   |   |   [4] V4 <= 1
  ## |   |   |   |   [5] V8 <= 1225
  ## |   |   |   |   |   [6] V8 <= 463 *
  ## |   |   |   |   |   [7] V8 > 463
  ## |   |   |   |   |   |   [8] V6 <= 80 *
  ## |   |   |   |   |   |   [9] V6 > 80 *
  ## |   |   |   |   [10] V8 > 1225 *
  ## |   |   |   [11] V4 > 1
  ## |   |   |   |   [12] V9 <= 4 *
  ## |   |   |   |   [13] V9 > 4 *
  ## |   |   [14] V5 > 1
  ## |   |   |   [15] V4 <= 1 *
  ## |   |   |   [16] V4 > 1 *
  ## |   [17] V7 > 90 *
  ## 
  ## $nodes[[29]]
  ## [1] root
  ## |   [2] V7 <= 90
  ## |   |   [3] V8 <= 675
  ## |   |   |   [4] V7 <= 80 *
  ## |   |   |   [5] V7 > 80 *
  ## |   |   [6] V8 > 675
  ## |   |   |   [7] V7 <= 60 *
  ## |   |   |   [8] V7 > 60
  ## |   |   |   |   [9] V3 <= 64
  ## |   |   |   |   |   [10] V5 <= 0 *
  ## |   |   |   |   |   [11] V5 > 0
  ## |   |   |   |   |   |   [12] V8 <= 975 *
  ## |   |   |   |   |   |   [13] V8 > 975 *
  ## |   |   |   |   [14] V3 > 64 *
  ## |   [15] V7 > 90 *
  ## 
  ## $nodes[[30]]
  ## [1] root
  ## |   [2] V7 <= 60 *
  ## |   [3] V7 > 60
  ## |   |   [4] V9 <= 18
  ## |   |   |   [5] V4 <= 1
  ## |   |   |   |   [6] V2 <= 11 *
  ## |   |   |   |   [7] V2 > 11 *
  ## |   |   |   [8] V4 > 1
  ## |   |   |   |   [9] V6 <= 90
  ## |   |   |   |   |   [10] V5 <= 0 *
  ## |   |   |   |   |   [11] V5 > 0
  ## |   |   |   |   |   |   [12] V3 <= 56 *
  ## |   |   |   |   |   |   [13] V3 > 56 *
  ## |   |   |   |   [14] V6 > 90 *
  ## |   |   [15] V9 > 18 *
  ## 
  ## $nodes[[31]]
  ## [1] root
  ## |   [2] V7 <= 80
  ## |   |   [3] V4 <= 1
  ## |   |   |   [4] V3 <= 65 *
  ## |   |   |   [5] V3 > 65 *
  ## |   |   [6] V4 > 1
  ## |   |   |   [7] V2 <= 10 *
  ## |   |   |   [8] V2 > 10 *
  ## |   [9] V7 > 80
  ## |   |   [10] V5 <= 0 *
  ## |   |   [11] V5 > 0
  ## |   |   |   [12] V2 <= 13 *
  ## |   |   |   [13] V2 > 13 *
  ## 
  ## $nodes[[32]]
  ## [1] root
  ## |   [2] V4 <= 1
  ## |   |   [3] V5 <= 1
  ## |   |   |   [4] V8 <= 575 *
  ## |   |   |   [5] V8 > 575
  ## |   |   |   |   [6] V2 <= 16
  ## |   |   |   |   |   [7] V3 <= 60 *
  ## |   |   |   |   |   [8] V3 > 60 *
  ## |   |   |   |   [9] V2 > 16 *
  ## |   |   [10] V5 > 1 *
  ## |   [11] V4 > 1
  ## |   |   [12] V7 <= 80
  ## |   |   |   [13] V9 <= 3 *
  ## |   |   |   [14] V9 > 3 *
  ## |   |   [15] V7 > 80 *
  ## 
  ## $nodes[[33]]
  ## [1] root
  ## |   [2] V6 <= 70
  ## |   |   [3] V9 <= 2 *
  ## |   |   [4] V9 > 2 *
  ## |   [5] V6 > 70
  ## |   |   [6] V9 <= 3
  ## |   |   |   [7] V4 <= 1 *
  ## |   |   |   [8] V4 > 1 *
  ## |   |   [9] V9 > 3
  ## |   |   |   [10] V8 <= 575 *
  ## |   |   |   [11] V8 > 575
  ## |   |   |   |   [12] V7 <= 80 *
  ## |   |   |   |   [13] V7 > 80 *
  ## 
  ## $nodes[[34]]
  ## [1] root
  ## |   [2] V2 <= 12
  ## |   |   [3] V8 <= 1175
  ## |   |   |   [4] V7 <= 90
  ## |   |   |   |   [5] V5 <= 1
  ## |   |   |   |   |   [6] V3 <= 66 *
  ## |   |   |   |   |   [7] V3 > 66 *
  ## |   |   |   |   [8] V5 > 1 *
  ## |   |   |   [9] V7 > 90 *
  ## |   |   [10] V8 > 1175 *
  ## |   [11] V2 > 12
  ## |   |   [12] V7 <= 60 *
  ## |   |   [13] V7 > 60
  ## |   |   |   [14] V2 <= 15 *
  ## |   |   |   [15] V2 > 15
  ## |   |   |   |   [16] V2 <= 21 *
  ## |   |   |   |   [17] V2 > 21 *
  ## 
  ## $nodes[[35]]
  ## [1] root
  ## |   [2] V5 <= 1
  ## |   |   [3] V3 <= 45 *
  ## |   |   [4] V3 > 45
  ## |   |   |   [5] V9 <= 4
  ## |   |   |   |   [6] V5 <= 0 *
  ## |   |   |   |   [7] V5 > 0
  ## |   |   |   |   |   [8] V7 <= 80 *
  ## |   |   |   |   |   [9] V7 > 80 *
  ## |   |   |   [10] V9 > 4
  ## |   |   |   |   [11] V4 <= 1
  ## |   |   |   |   |   [12] V5 <= 0 *
  ## |   |   |   |   |   [13] V5 > 0
  ## |   |   |   |   |   |   [14] V2 <= 11 *
  ## |   |   |   |   |   |   [15] V2 > 11 *
  ## |   |   |   |   [16] V4 > 1 *
  ## |   [17] V5 > 1
  ## |   |   [18] V9 <= 10 *
  ## |   |   [19] V9 > 10 *
  ## 
  ## $nodes[[36]]
  ## [1] root
  ## |   [2] V5 <= 1
  ## |   |   [3] V5 <= 0
  ## |   |   |   [4] V9 <= 6
  ## |   |   |   |   [5] V2 <= 5 *
  ## |   |   |   |   [6] V2 > 5 *
  ## |   |   |   [7] V9 > 6 *
  ## |   |   [8] V5 > 0
  ## |   |   |   [9] V4 <= 1
  ## |   |   |   |   [10] V3 <= 59 *
  ## |   |   |   |   [11] V3 > 59
  ## |   |   |   |   |   [12] V8 <= 825 *
  ## |   |   |   |   |   [13] V8 > 825 *
  ## |   |   |   [14] V4 > 1 *
  ## |   [15] V5 > 1
  ## |   |   [16] V7 <= 60 *
  ## |   |   [17] V7 > 60 *
  ## 
  ## $nodes[[37]]
  ## [1] root
  ## |   [2] V7 <= 60
  ## |   |   [3] V9 <= 12 *
  ## |   |   [4] V9 > 12 *
  ## |   [5] V7 > 60
  ## |   |   [6] V8 <= 1100
  ## |   |   |   [7] V4 <= 1
  ## |   |   |   |   [8] V9 <= 20
  ## |   |   |   |   |   [9] V6 <= 80 *
  ## |   |   |   |   |   [10] V6 > 80 *
  ## |   |   |   |   [11] V9 > 20 *
  ## |   |   |   [12] V4 > 1
  ## |   |   |   |   [13] V7 <= 80 *
  ## |   |   |   |   [14] V7 > 80 *
  ## |   |   [15] V8 > 1100
  ## |   |   |   [16] V9 <= 2 *
  ## |   |   |   [17] V9 > 2 *
  ## 
  ## $nodes[[38]]
  ## [1] root
  ## |   [2] V7 <= 60 *
  ## |   [3] V7 > 60
  ## |   |   [4] V5 <= 1
  ## |   |   |   [5] V4 <= 1
  ## |   |   |   |   [6] V5 <= 0
  ## |   |   |   |   |   [7] V9 <= 5 *
  ## |   |   |   |   |   [8] V9 > 5 *
  ## |   |   |   |   [9] V5 > 0
  ## |   |   |   |   |   [10] V3 <= 63 *
  ## |   |   |   |   |   [11] V3 > 63 *
  ## |   |   |   [12] V4 > 1
  ## |   |   |   |   [13] V9 <= 4 *
  ## |   |   |   |   [14] V9 > 4 *
  ## |   |   [15] V5 > 1 *
  ## 
  ## $nodes[[39]]
  ## [1] root
  ## |   [2] V7 <= 70
  ## |   |   [3] V9 <= 20
  ## |   |   |   [4] V4 <= 1 *
  ## |   |   |   [5] V4 > 1 *
  ## |   |   [6] V9 > 20 *
  ## |   [7] V7 > 70
  ## |   |   [8] V5 <= 0
  ## |   |   |   [9] V6 <= 90 *
  ## |   |   |   [10] V6 > 90 *
  ## |   |   [11] V5 > 0
  ## |   |   |   [12] V2 <= 12
  ## |   |   |   |   [13] V6 <= 80
  ## |   |   |   |   |   [14] V9 <= 14 *
  ## |   |   |   |   |   [15] V9 > 14 *
  ## |   |   |   |   [16] V6 > 80 *
  ## |   |   |   [17] V2 > 12 *
  ## 
  ## $nodes[[40]]
  ## [1] root
  ## |   [2] V5 <= 1
  ## |   |   [3] V7 <= 90
  ## |   |   |   [4] V9 <= 4
  ## |   |   |   |   [5] V4 <= 1 *
  ## |   |   |   |   [6] V4 > 1 *
  ## |   |   |   [7] V9 > 4
  ## |   |   |   |   [8] V4 <= 1
  ## |   |   |   |   |   [9] V7 <= 80
  ## |   |   |   |   |   |   [10] V7 <= 70 *
  ## |   |   |   |   |   |   [11] V7 > 70 *
  ## |   |   |   |   |   [12] V7 > 80 *
  ## |   |   |   |   [13] V4 > 1 *
  ## |   |   [14] V7 > 90 *
  ## |   [15] V5 > 1
  ## |   |   [16] V3 <= 65 *
  ## |   |   [17] V3 > 65 *
  ## 
  ## $nodes[[41]]
  ## [1] root
  ## |   [2] V3 <= 67
  ## |   |   [3] V6 <= 80
  ## |   |   |   [4] V3 <= 56 *
  ## |   |   |   [5] V3 > 56
  ## |   |   |   |   [6] V2 <= 15 *
  ## |   |   |   |   [7] V2 > 15 *
  ## |   |   [8] V6 > 80
  ## |   |   |   [9] V5 <= 0
  ## |   |   |   |   [10] V3 <= 56 *
  ## |   |   |   |   [11] V3 > 56 *
  ## |   |   |   [12] V5 > 0 *
  ## |   [13] V3 > 67
  ## |   |   [14] V9 <= 14
  ## |   |   |   [15] V6 <= 80
  ## |   |   |   |   [16] V5 <= 1 *
  ## |   |   |   |   [17] V5 > 1 *
  ## |   |   |   [18] V6 > 80 *
  ## |   |   [19] V9 > 14 *
  ## 
  ## $nodes[[42]]
  ## [1] root
  ## |   [2] V4 <= 1
  ## |   |   [3] V3 <= 70
  ## |   |   |   [4] V5 <= 1
  ## |   |   |   |   [5] V7 <= 70 *
  ## |   |   |   |   [6] V7 > 70
  ## |   |   |   |   |   [7] V5 <= 0 *
  ## |   |   |   |   |   [8] V5 > 0 *
  ## |   |   |   [9] V5 > 1 *
  ## |   |   [10] V3 > 70 *
  ## |   [11] V4 > 1
  ## |   |   [12] V7 <= 70 *
  ## |   |   [13] V7 > 70
  ## |   |   |   [14] V2 <= 12
  ## |   |   |   |   [15] V5 <= 0 *
  ## |   |   |   |   [16] V5 > 0 *
  ## |   |   |   [17] V2 > 12 *
  ## 
  ## $nodes[[43]]
  ## [1] root
  ## |   [2] V5 <= 0
  ## |   |   [3] V6 <= 90 *
  ## |   |   [4] V6 > 90 *
  ## |   [5] V5 > 0
  ## |   |   [6] V4 <= 1
  ## |   |   |   [7] V2 <= 7
  ## |   |   |   |   [8] V7 <= 60 *
  ## |   |   |   |   [9] V7 > 60 *
  ## |   |   |   [10] V2 > 7
  ## |   |   |   |   [11] V6 <= 70 *
  ## |   |   |   |   [12] V6 > 70 *
  ## |   |   [13] V4 > 1
  ## |   |   |   [14] V8 <= 675 *
  ## |   |   |   [15] V8 > 675 *
  ## 
  ## $nodes[[44]]
  ## [1] root
  ## |   [2] V5 <= 1
  ## |   |   [3] V5 <= 0
  ## |   |   |   [4] V6 <= 90 *
  ## |   |   |   [5] V6 > 90 *
  ## |   |   [6] V5 > 0
  ## |   |   |   [7] V4 <= 1
  ## |   |   |   |   [8] V7 <= 60 *
  ## |   |   |   |   [9] V7 > 60
  ## |   |   |   |   |   [10] V6 <= 80 *
  ## |   |   |   |   |   [11] V6 > 80 *
  ## |   |   |   [12] V4 > 1 *
  ## |   [13] V5 > 1
  ## |   |   [14] V7 <= 60 *
  ## |   |   [15] V7 > 60 *
  ## 
  ## $nodes[[45]]
  ## [1] root
  ## |   [2] V4 <= 1
  ## |   |   [3] V3 <= 67
  ## |   |   |   [4] V6 <= 70 *
  ## |   |   |   [5] V6 > 70
  ## |   |   |   |   [6] V5 <= 0 *
  ## |   |   |   |   [7] V5 > 0
  ## |   |   |   |   |   [8] V3 <= 57 *
  ## |   |   |   |   |   [9] V3 > 57 *
  ## |   |   [10] V3 > 67
  ## |   |   |   [11] V9 <= 10 *
  ## |   |   |   [12] V9 > 10 *
  ## |   [13] V4 > 1
  ## |   |   [14] V5 <= 0 *
  ## |   |   [15] V5 > 0
  ## |   |   |   [16] V9 <= 0 *
  ## |   |   |   [17] V9 > 0 *
  ## 
  ## $nodes[[46]]
  ## [1] root
  ## |   [2] V5 <= 0
  ## |   |   [3] V7 <= 90 *
  ## |   |   [4] V7 > 90 *
  ## |   [5] V5 > 0
  ## |   |   [6] V7 <= 60 *
  ## |   |   [7] V7 > 60
  ## |   |   |   [8] V2 <= 5 *
  ## |   |   |   [9] V2 > 5
  ## |   |   |   |   [10] V3 <= 59 *
  ## |   |   |   |   [11] V3 > 59
  ## |   |   |   |   |   [12] V5 <= 1
  ## |   |   |   |   |   |   [13] V6 <= 80 *
  ## |   |   |   |   |   |   [14] V6 > 80 *
  ## |   |   |   |   |   [15] V5 > 1 *
  ## 
  ## $nodes[[47]]
  ## [1] root
  ## |   [2] V3 <= 64
  ## |   |   [3] V8 <= 1175
  ## |   |   |   [4] V5 <= 0 *
  ## |   |   |   [5] V5 > 0
  ## |   |   |   |   [6] V8 <= 925
  ## |   |   |   |   |   [7] V9 <= 14 *
  ## |   |   |   |   |   [8] V9 > 14 *
  ## |   |   |   |   [9] V8 > 925 *
  ## |   |   [10] V8 > 1175 *
  ## |   [11] V3 > 64
  ## |   |   [12] V9 <= 20
  ## |   |   |   [13] V6 <= 70 *
  ## |   |   |   [14] V6 > 70
  ## |   |   |   |   [15] V5 <= 0 *
  ## |   |   |   |   [16] V5 > 0 *
  ## |   |   [17] V9 > 20 *
  ## 
  ## $nodes[[48]]
  ## [1] root
  ## |   [2] V6 <= 70
  ## |   |   [3] V7 <= 60 *
  ## |   |   [4] V7 > 60 *
  ## |   [5] V6 > 70
  ## |   |   [6] V4 <= 1
  ## |   |   |   [7] V3 <= 65
  ## |   |   |   |   [8] V7 <= 80 *
  ## |   |   |   |   [9] V7 > 80 *
  ## |   |   |   [10] V3 > 65 *
  ## |   |   [11] V4 > 1
  ## |   |   |   [12] V5 <= 0 *
  ## |   |   |   [13] V5 > 0 *
  ## 
  ## $nodes[[49]]
  ## [1] root
  ## |   [2] V5 <= 1
  ## |   |   [3] V7 <= 70 *
  ## |   |   [4] V7 > 70
  ## |   |   |   [5] V9 <= 12
  ## |   |   |   |   [6] V6 <= 80 *
  ## |   |   |   |   [7] V6 > 80
  ## |   |   |   |   |   [8] V5 <= 0
  ## |   |   |   |   |   |   [9] V3 <= 51 *
  ## |   |   |   |   |   |   [10] V3 > 51 *
  ## |   |   |   |   |   [11] V5 > 0 *
  ## |   |   |   [12] V9 > 12 *
  ## |   [13] V5 > 1
  ## |   |   [14] V9 <= 20 *
  ## |   |   [15] V9 > 20 *
  ## 
  ## $nodes[[50]]
  ## [1] root
  ## |   [2] V7 <= 70
  ## |   |   [3] V4 <= 1
  ## |   |   |   [4] V9 <= 20
  ## |   |   |   |   [5] V6 <= 70 *
  ## |   |   |   |   [6] V6 > 70 *
  ## |   |   |   [7] V9 > 20 *
  ## |   |   [8] V4 > 1 *
  ## |   [9] V7 > 70
  ## |   |   [10] V3 <= 63
  ## |   |   |   [11] V4 <= 1
  ## |   |   |   |   [12] V5 <= 0 *
  ## |   |   |   |   [13] V5 > 0 *
  ## |   |   |   [14] V4 > 1 *
  ## |   |   [15] V3 > 63
  ## |   |   |   [16] V9 <= 3 *
  ## |   |   |   [17] V9 > 3 *
  ## 
  ## $nodes[[51]]
  ## [1] root
  ## |   [2] V7 <= 70
  ## |   |   [3] V9 <= 20
  ## |   |   |   [4] V2 <= 3 *
  ## |   |   |   [5] V2 > 3 *
  ## |   |   [6] V9 > 20 *
  ## |   [7] V7 > 70
  ## |   |   [8] V3 <= 63
  ## |   |   |   [9] V4 <= 1 *
  ## |   |   |   [10] V4 > 1 *
  ## |   |   [11] V3 > 63
  ## |   |   |   [12] V8 <= 1100
  ## |   |   |   |   [13] V4 <= 1 *
  ## |   |   |   |   [14] V4 > 1 *
  ## |   |   |   [15] V8 > 1100 *
  ## 
  ## $nodes[[52]]
  ## [1] root
  ## |   [2] V6 <= 70
  ## |   |   [3] V4 <= 1 *
  ## |   |   [4] V4 > 1 *
  ## |   [5] V6 > 70
  ## |   |   [6] V5 <= 0
  ## |   |   |   [7] V3 <= 63
  ## |   |   |   |   [8] V8 <= 768 *
  ## |   |   |   |   [9] V8 > 768 *
  ## |   |   |   [10] V3 > 63 *
  ## |   |   [11] V5 > 0
  ## |   |   |   [12] V4 <= 1
  ## |   |   |   |   [13] V8 <= 825 *
  ## |   |   |   |   [14] V8 > 825 *
  ## |   |   |   [15] V4 > 1
  ## |   |   |   |   [16] V3 <= 63 *
  ## |   |   |   |   [17] V3 > 63 *
  ## 
  ## $nodes[[53]]
  ## [1] root
  ## |   [2] V7 <= 60 *
  ## |   [3] V7 > 60
  ## |   |   [4] V4 <= 1
  ## |   |   |   [5] V5 <= 1
  ## |   |   |   |   [6] V3 <= 65
  ## |   |   |   |   |   [7] V5 <= 0 *
  ## |   |   |   |   |   [8] V5 > 0
  ## |   |   |   |   |   |   [9] V3 <= 53 *
  ## |   |   |   |   |   |   [10] V3 > 53 *
  ## |   |   |   |   [11] V3 > 65 *
  ## |   |   |   [12] V5 > 1 *
  ## |   |   [13] V4 > 1
  ## |   |   |   [14] V7 <= 80 *
  ## |   |   |   [15] V7 > 80 *
  ## 
  ## $nodes[[54]]
  ## [1] root
  ## |   [2] V3 <= 45 *
  ## |   [3] V3 > 45
  ## |   |   [4] V7 <= 70
  ## |   |   |   [5] V2 <= 3 *
  ## |   |   |   [6] V2 > 3
  ## |   |   |   |   [7] V9 <= 13
  ## |   |   |   |   |   [8] V8 <= 1025 *
  ## |   |   |   |   |   [9] V8 > 1025 *
  ## |   |   |   |   [10] V9 > 13 *
  ## |   |   [11] V7 > 70
  ## |   |   |   [12] V5 <= 0 *
  ## |   |   |   [13] V5 > 0
  ## |   |   |   |   [14] V4 <= 1
  ## |   |   |   |   |   [15] V7 <= 90 *
  ## |   |   |   |   |   [16] V7 > 90 *
  ## |   |   |   |   [17] V4 > 1 *
  ## 
  ## $nodes[[55]]
  ## [1] root
  ## |   [2] V7 <= 60 *
  ## |   [3] V7 > 60
  ## |   |   [4] V7 <= 80
  ## |   |   |   [5] V8 <= 538 *
  ## |   |   |   [6] V8 > 538
  ## |   |   |   |   [7] V6 <= 80 *
  ## |   |   |   |   [8] V6 > 80 *
  ## |   |   [9] V7 > 80
  ## |   |   |   [10] V2 <= 10
  ## |   |   |   |   [11] V7 <= 90 *
  ## |   |   |   |   [12] V7 > 90 *
  ## |   |   |   [13] V2 > 10
  ## |   |   |   |   [14] V4 <= 1 *
  ## |   |   |   |   [15] V4 > 1 *
  ## 
  ## $nodes[[56]]
  ## [1] root
  ## |   [2] V5 <= 0
  ## |   |   [3] V7 <= 80 *
  ## |   |   [4] V7 > 80 *
  ## |   [5] V5 > 0
  ## |   |   [6] V2 <= 10
  ## |   |   |   [7] V5 <= 1 *
  ## |   |   |   [8] V5 > 1 *
  ## |   |   [9] V2 > 10
  ## |   |   |   [10] V9 <= 20
  ## |   |   |   |   [11] V7 <= 80 *
  ## |   |   |   |   [12] V7 > 80 *
  ## |   |   |   [13] V9 > 20 *
  ## 
  ## $nodes[[57]]
  ## [1] root
  ## |   [2] V3 <= 48 *
  ## |   [3] V3 > 48
  ## |   |   [4] V7 <= 80
  ## |   |   |   [5] V5 <= 0 *
  ## |   |   |   [6] V5 > 0
  ## |   |   |   |   [7] V3 <= 63 *
  ## |   |   |   |   [8] V3 > 63
  ## |   |   |   |   |   [9] V9 <= 20 *
  ## |   |   |   |   |   [10] V9 > 20 *
  ## |   |   [11] V7 > 80
  ## |   |   |   [12] V5 <= 0 *
  ## |   |   |   [13] V5 > 0
  ## |   |   |   |   [14] V7 <= 90 *
  ## |   |   |   |   [15] V7 > 90 *
  ## 
  ## $nodes[[58]]
  ## [1] root
  ## |   [2] V3 <= 44 *
  ## |   [3] V3 > 44
  ## |   |   [4] V4 <= 1
  ## |   |   |   [5] V7 <= 60 *
  ## |   |   |   [6] V7 > 60
  ## |   |   |   |   [7] V2 <= 11
  ## |   |   |   |   |   [8] V3 <= 64 *
  ## |   |   |   |   |   [9] V3 > 64 *
  ## |   |   |   |   [10] V2 > 11
  ## |   |   |   |   |   [11] V9 <= 5 *
  ## |   |   |   |   |   [12] V9 > 5 *
  ## |   |   [13] V4 > 1
  ## |   |   |   [14] V5 <= 1
  ## |   |   |   |   [15] V2 <= 12 *
  ## |   |   |   |   [16] V2 > 12 *
  ## |   |   |   [17] V5 > 1 *
  ## 
  ## $nodes[[59]]
  ## [1] root
  ## |   [2] V8 <= 488 *
  ## |   [3] V8 > 488
  ## |   |   [4] V5 <= 0
  ## |   |   |   [5] V4 <= 1 *
  ## |   |   |   [6] V4 > 1 *
  ## |   |   [7] V5 > 0
  ## |   |   |   [8] V9 <= 20
  ## |   |   |   |   [9] V8 <= 1100
  ## |   |   |   |   |   [10] V5 <= 1
  ## |   |   |   |   |   |   [11] V2 <= 12 *
  ## |   |   |   |   |   |   [12] V2 > 12 *
  ## |   |   |   |   |   [13] V5 > 1 *
  ## |   |   |   |   [14] V8 > 1100 *
  ## |   |   |   [15] V9 > 20 *
  ## 
  ## $nodes[[60]]
  ## [1] root
  ## |   [2] V6 <= 80
  ## |   |   [3] V9 <= 20
  ## |   |   |   [4] V5 <= 1
  ## |   |   |   |   [5] V7 <= 80 *
  ## |   |   |   |   [6] V7 > 80 *
  ## |   |   |   [7] V5 > 1 *
  ## |   |   [8] V9 > 20 *
  ## |   [9] V6 > 80
  ## |   |   [10] V4 <= 1
  ## |   |   |   [11] V2 <= 13
  ## |   |   |   |   [12] V9 <= 5 *
  ## |   |   |   |   [13] V9 > 5 *
  ## |   |   |   [14] V2 > 13 *
  ## |   |   [15] V4 > 1 *
  ## 
  ## $nodes[[61]]
  ## [1] root
  ## |   [2] V5 <= 1
  ## |   |   [3] V4 <= 1
  ## |   |   |   [4] V7 <= 70 *
  ## |   |   |   [5] V7 > 70
  ## |   |   |   |   [6] V8 <= 1039 *
  ## |   |   |   |   [7] V8 > 1039 *
  ## |   |   [8] V4 > 1
  ## |   |   |   [9] V6 <= 80 *
  ## |   |   |   [10] V6 > 80
  ## |   |   |   |   [11] V9 <= 2 *
  ## |   |   |   |   [12] V9 > 2 *
  ## |   [13] V5 > 1
  ## |   |   [14] V9 <= 10 *
  ## |   |   [15] V9 > 10 *
  ## 
  ## $nodes[[62]]
  ## [1] root
  ## |   [2] V5 <= 1
  ## |   |   [3] V3 <= 63
  ## |   |   |   [4] V8 <= 1025
  ## |   |   |   |   [5] V4 <= 1 *
  ## |   |   |   |   [6] V4 > 1 *
  ## |   |   |   [7] V8 > 1025
  ## |   |   |   |   [8] V2 <= 5 *
  ## |   |   |   |   [9] V2 > 5 *
  ## |   |   [10] V3 > 63
  ## |   |   |   [11] V6 <= 80 *
  ## |   |   |   [12] V6 > 80 *
  ## |   [13] V5 > 1
  ## |   |   [14] V2 <= 5 *
  ## |   |   [15] V2 > 5 *
  ## 
  ## $nodes[[63]]
  ## [1] root
  ## |   [2] V4 <= 1
  ## |   |   [3] V8 <= 910
  ## |   |   |   [4] V9 <= 20 *
  ## |   |   |   [5] V9 > 20 *
  ## |   |   [6] V8 > 910
  ## |   |   |   [7] V8 <= 1225
  ## |   |   |   |   [8] V5 <= 0 *
  ## |   |   |   |   [9] V5 > 0 *
  ## |   |   |   [10] V8 > 1225 *
  ## |   [11] V4 > 1
  ## |   |   [12] V8 <= 825
  ## |   |   |   [13] V6 <= 80 *
  ## |   |   |   [14] V6 > 80 *
  ## |   |   [15] V8 > 825
  ## |   |   |   [16] V5 <= 0 *
  ## |   |   |   [17] V5 > 0 *
  ## 
  ## $nodes[[64]]
  ## [1] root
  ## |   [2] V4 <= 1
  ## |   |   [3] V3 <= 65
  ## |   |   |   [4] V5 <= 0 *
  ## |   |   |   [5] V5 > 0 *
  ## |   |   [6] V3 > 65
  ## |   |   |   [7] V8 <= 925 *
  ## |   |   |   [8] V8 > 925 *
  ## |   [9] V4 > 1
  ## |   |   [10] V5 <= 1
  ## |   |   |   [11] V7 <= 80 *
  ## |   |   |   [12] V7 > 80 *
  ## |   |   [13] V5 > 1 *
  ## 
  ## $nodes[[65]]
  ## [1] root
  ## |   [2] V5 <= 0
  ## |   |   [3] V6 <= 90 *
  ## |   |   [4] V6 > 90 *
  ## |   [5] V5 > 0
  ## |   |   [6] V5 <= 1
  ## |   |   |   [7] V4 <= 1
  ## |   |   |   |   [8] V9 <= 2 *
  ## |   |   |   |   [9] V9 > 2 *
  ## |   |   |   [10] V4 > 1
  ## |   |   |   |   [11] V8 <= 825 *
  ## |   |   |   |   [12] V8 > 825 *
  ## |   |   [13] V5 > 1
  ## |   |   |   [14] V8 <= 925 *
  ## |   |   |   [15] V8 > 925 *
  ## 
  ## $nodes[[66]]
  ## [1] root
  ## |   [2] V7 <= 60 *
  ## |   [3] V7 > 60
  ## |   |   [4] V4 <= 1
  ## |   |   |   [5] V8 <= 730 *
  ## |   |   |   [6] V8 > 730
  ## |   |   |   |   [7] V6 <= 80 *
  ## |   |   |   |   [8] V6 > 80
  ## |   |   |   |   |   [9] V2 <= 13 *
  ## |   |   |   |   |   [10] V2 > 13 *
  ## |   |   [11] V4 > 1
  ## |   |   |   [12] V3 <= 54 *
  ## |   |   |   [13] V3 > 54
  ## |   |   |   |   [14] V2 <= 10 *
  ## |   |   |   |   [15] V2 > 10 *
  ## 
  ## $nodes[[67]]
  ## [1] root
  ## |   [2] V3 <= 71
  ## |   |   [3] V6 <= 70 *
  ## |   |   [4] V6 > 70
  ## |   |   |   [5] V4 <= 1
  ## |   |   |   |   [6] V6 <= 80 *
  ## |   |   |   |   [7] V6 > 80
  ## |   |   |   |   |   [8] V5 <= 0 *
  ## |   |   |   |   |   [9] V5 > 0 *
  ## |   |   |   [10] V4 > 1
  ## |   |   |   |   [11] V2 <= 12 *
  ## |   |   |   |   [12] V2 > 12 *
  ## |   [13] V3 > 71 *
  ## 
  ## $nodes[[68]]
  ## [1] root
  ## |   [2] V4 <= 1
  ## |   |   [3] V6 <= 80
  ## |   |   |   [4] V3 <= 69
  ## |   |   |   |   [5] V2 <= 13 *
  ## |   |   |   |   [6] V2 > 13 *
  ## |   |   |   [7] V3 > 69 *
  ## |   |   [8] V6 > 80
  ## |   |   |   [9] V2 <= 13
  ## |   |   |   |   [10] V2 <= 6 *
  ## |   |   |   |   [11] V2 > 6 *
  ## |   |   |   [12] V2 > 13 *
  ## |   [13] V4 > 1
  ## |   |   [14] V8 <= 1060
  ## |   |   |   [15] V6 <= 80 *
  ## |   |   |   [16] V6 > 80 *
  ## |   |   [17] V8 > 1060 *
  ## 
  ## $nodes[[69]]
  ## [1] root
  ## |   [2] V4 <= 1
  ## |   |   [3] V7 <= 60 *
  ## |   |   [4] V7 > 60
  ## |   |   |   [5] V2 <= 6 *
  ## |   |   |   [6] V2 > 6
  ## |   |   |   |   [7] V3 <= 63 *
  ## |   |   |   |   [8] V3 > 63 *
  ## |   [9] V4 > 1
  ## |   |   [10] V7 <= 90
  ## |   |   |   [11] V9 <= 0 *
  ## |   |   |   [12] V9 > 0
  ## |   |   |   |   [13] V5 <= 1 *
  ## |   |   |   |   [14] V5 > 1 *
  ## |   |   [15] V7 > 90 *
  ## 
  ## $nodes[[70]]
  ## [1] root
  ## |   [2] V4 <= 1
  ## |   |   [3] V3 <= 71
  ## |   |   |   [4] V9 <= 20
  ## |   |   |   |   [5] V6 <= 90
  ## |   |   |   |   |   [6] V8 <= 1125
  ## |   |   |   |   |   |   [7] V9 <= 7 *
  ## |   |   |   |   |   |   [8] V9 > 7 *
  ## |   |   |   |   |   [9] V8 > 1125 *
  ## |   |   |   |   [10] V6 > 90 *
  ## |   |   |   [11] V9 > 20 *
  ## |   |   [12] V3 > 71 *
  ## |   [13] V4 > 1
  ## |   |   [14] V5 <= 0 *
  ## |   |   [15] V5 > 0
  ## |   |   |   [16] V2 <= 12 *
  ## |   |   |   [17] V2 > 12 *
  ## 
  ## $nodes[[71]]
  ## [1] root
  ## |   [2] V5 <= 0
  ## |   |   [3] V3 <= 64
  ## |   |   |   [4] V7 <= 90 *
  ## |   |   |   [5] V7 > 90 *
  ## |   |   [6] V3 > 64 *
  ## |   [7] V5 > 0
  ## |   |   [8] V7 <= 60 *
  ## |   |   [9] V7 > 60
  ## |   |   |   [10] V4 <= 1
  ## |   |   |   |   [11] V9 <= 20
  ## |   |   |   |   |   [12] V8 <= 1025 *
  ## |   |   |   |   |   [13] V8 > 1025 *
  ## |   |   |   |   [14] V9 > 20 *
  ## |   |   |   [15] V4 > 1
  ## |   |   |   |   [16] V2 <= 12 *
  ## |   |   |   |   [17] V2 > 12 *
  ## 
  ## $nodes[[72]]
  ## [1] root
  ## |   [2] V7 <= 70
  ## |   |   [3] V2 <= 3 *
  ## |   |   [4] V2 > 3
  ## |   |   |   [5] V4 <= 1 *
  ## |   |   |   [6] V4 > 1 *
  ## |   [7] V7 > 70
  ## |   |   [8] V5 <= 0
  ## |   |   |   [9] V7 <= 90 *
  ## |   |   |   [10] V7 > 90 *
  ## |   |   [11] V5 > 0
  ## |   |   |   [12] V4 <= 1
  ## |   |   |   |   [13] V3 <= 59 *
  ## |   |   |   |   [14] V3 > 59 *
  ## |   |   |   [15] V4 > 1 *
  ## 
  ## $nodes[[73]]
  ## [1] root
  ## |   [2] V5 <= 1
  ## |   |   [3] V4 <= 1
  ## |   |   |   [4] V6 <= 80
  ## |   |   |   |   [5] V7 <= 80 *
  ## |   |   |   |   [6] V7 > 80 *
  ## |   |   |   [7] V6 > 80
  ## |   |   |   |   [8] V3 <= 65 *
  ## |   |   |   |   [9] V3 > 65 *
  ## |   |   [10] V4 > 1
  ## |   |   |   [11] V6 <= 80 *
  ## |   |   |   [12] V6 > 80 *
  ## |   [13] V5 > 1
  ## |   |   [14] V9 <= 11 *
  ## |   |   [15] V9 > 11 *
  ## 
  ## $nodes[[74]]
  ## [1] root
  ## |   [2] V6 <= 80
  ## |   |   [3] V4 <= 1
  ## |   |   |   [4] V9 <= 20
  ## |   |   |   |   [5] V9 <= 8 *
  ## |   |   |   |   [6] V9 > 8 *
  ## |   |   |   [7] V9 > 20 *
  ## |   |   [8] V4 > 1
  ## |   |   |   [9] V6 <= 60 *
  ## |   |   |   [10] V6 > 60 *
  ## |   [11] V6 > 80
  ## |   |   [12] V4 <= 1
  ## |   |   |   [13] V9 <= 5 *
  ## |   |   |   [14] V9 > 5 *
  ## |   |   [15] V4 > 1 *
  ## 
  ## $nodes[[75]]
  ## [1] root
  ## |   [2] V5 <= 1
  ## |   |   [3] V4 <= 1
  ## |   |   |   [4] V5 <= 0 *
  ## |   |   |   [5] V5 > 0
  ## |   |   |   |   [6] V9 <= 14
  ## |   |   |   |   |   [7] V7 <= 80 *
  ## |   |   |   |   |   [8] V7 > 80 *
  ## |   |   |   |   [9] V9 > 14 *
  ## |   |   [10] V4 > 1
  ## |   |   |   [11] V9 <= 10 *
  ## |   |   |   [12] V9 > 10 *
  ## |   [13] V5 > 1
  ## |   |   [14] V2 <= 13 *
  ## |   |   [15] V2 > 13 *
  ## 
  ## $nodes[[76]]
  ## [1] root
  ## |   [2] V7 <= 60 *
  ## |   [3] V7 > 60
  ## |   |   [4] V3 <= 64
  ## |   |   |   [5] V6 <= 80 *
  ## |   |   |   [6] V6 > 80
  ## |   |   |   |   [7] V2 <= 13 *
  ## |   |   |   |   [8] V2 > 13 *
  ## |   |   [9] V3 > 64
  ## |   |   |   [10] V8 <= 575 *
  ## |   |   |   [11] V8 > 575
  ## |   |   |   |   [12] V8 <= 910 *
  ## |   |   |   |   [13] V8 > 910
  ## |   |   |   |   |   [14] V8 <= 1100 *
  ## |   |   |   |   |   [15] V8 > 1100 *
  ## 
  ## $nodes[[77]]
  ## [1] root
  ## |   [2] V4 <= 1
  ## |   |   [3] V7 <= 60 *
  ## |   |   [4] V7 > 60
  ## |   |   |   [5] V5 <= 1
  ## |   |   |   |   [6] V5 <= 0 *
  ## |   |   |   |   [7] V5 > 0
  ## |   |   |   |   |   [8] V8 <= 825 *
  ## |   |   |   |   |   [9] V8 > 825
  ## |   |   |   |   |   |   [10] V7 <= 80 *
  ## |   |   |   |   |   |   [11] V7 > 80 *
  ## |   |   |   [12] V5 > 1 *
  ## |   [13] V4 > 1
  ## |   |   [14] V9 <= -1 *
  ## |   |   [15] V9 > -1
  ## |   |   |   [16] V7 <= 80 *
  ## |   |   |   [17] V7 > 80 *
  ## 
  ## $nodes[[78]]
  ## [1] root
  ## |   [2] V4 <= 1
  ## |   |   [3] V7 <= 60 *
  ## |   |   [4] V7 > 60
  ## |   |   |   [5] V3 <= 68
  ## |   |   |   |   [6] V6 <= 80 *
  ## |   |   |   |   [7] V6 > 80
  ## |   |   |   |   |   [8] V7 <= 80 *
  ## |   |   |   |   |   [9] V7 > 80 *
  ## |   |   |   [10] V3 > 68 *
  ## |   [11] V4 > 1
  ## |   |   [12] V9 <= -1 *
  ## |   |   [13] V9 > -1
  ## |   |   |   [14] V6 <= 70 *
  ## |   |   |   [15] V6 > 70
  ## |   |   |   |   [16] V8 <= 925 *
  ## |   |   |   |   [17] V8 > 925 *
  ## 
  ## $nodes[[79]]
  ## [1] root
  ## |   [2] V5 <= 1
  ## |   |   [3] V5 <= 0
  ## |   |   |   [4] V8 <= 463 *
  ## |   |   |   [5] V8 > 463
  ## |   |   |   |   [6] V7 <= 80 *
  ## |   |   |   |   [7] V7 > 80 *
  ## |   |   [8] V5 > 0
  ## |   |   |   [9] V6 <= 80
  ## |   |   |   |   [10] V9 <= 0 *
  ## |   |   |   |   [11] V9 > 0
  ## |   |   |   |   |   [12] V3 <= 66 *
  ## |   |   |   |   |   [13] V3 > 66 *
  ## |   |   |   [14] V6 > 80
  ## |   |   |   |   [15] V4 <= 1 *
  ## |   |   |   |   [16] V4 > 1 *
  ## |   [17] V5 > 1
  ## |   |   [18] V4 <= 1 *
  ## |   |   [19] V4 > 1 *
  ## 
  ## $nodes[[80]]
  ## [1] root
  ## |   [2] V5 <= 1
  ## |   |   [3] V7 <= 90
  ## |   |   |   [4] V6 <= 80
  ## |   |   |   |   [5] V2 <= 11 *
  ## |   |   |   |   [6] V2 > 11 *
  ## |   |   |   [7] V6 > 80
  ## |   |   |   |   [8] V7 <= 80 *
  ## |   |   |   |   [9] V7 > 80 *
  ## |   |   [10] V7 > 90 *
  ## |   [11] V5 > 1
  ## |   |   [12] V2 <= 13 *
  ## |   |   [13] V2 > 13 *
  ## 
  ## $nodes[[81]]
  ## [1] root
  ## |   [2] V5 <= 0
  ## |   |   [3] V2 <= 11 *
  ## |   |   [4] V2 > 11 *
  ## |   [5] V5 > 0
  ## |   |   [6] V4 <= 1
  ## |   |   |   [7] V9 <= 20
  ## |   |   |   |   [8] V6 <= 70 *
  ## |   |   |   |   [9] V6 > 70
  ## |   |   |   |   |   [10] V9 <= 8 *
  ## |   |   |   |   |   [11] V9 > 8 *
  ## |   |   |   [12] V9 > 20 *
  ## |   |   [13] V4 > 1
  ## |   |   |   [14] V9 <= 10 *
  ## |   |   |   [15] V9 > 10 *
  ## 
  ## $nodes[[82]]
  ## [1] root
  ## |   [2] V5 <= 1
  ## |   |   [3] V4 <= 1
  ## |   |   |   [4] V3 <= 65
  ## |   |   |   |   [5] V9 <= 1 *
  ## |   |   |   |   [6] V9 > 1
  ## |   |   |   |   |   [7] V2 <= 4 *
  ## |   |   |   |   |   [8] V2 > 4 *
  ## |   |   |   [9] V3 > 65
  ## |   |   |   |   [10] V6 <= 80 *
  ## |   |   |   |   [11] V6 > 80 *
  ## |   |   [12] V4 > 1
  ## |   |   |   [13] V7 <= 80 *
  ## |   |   |   [14] V7 > 80 *
  ## |   [15] V5 > 1
  ## |   |   [16] V9 <= 20 *
  ## |   |   [17] V9 > 20 *
  ## 
  ## $nodes[[83]]
  ## [1] root
  ## |   [2] V3 <= 70
  ## |   |   [3] V8 <= 925
  ## |   |   |   [4] V5 <= 0 *
  ## |   |   |   [5] V5 > 0
  ## |   |   |   |   [6] V2 <= 6 *
  ## |   |   |   |   [7] V2 > 6 *
  ## |   |   [8] V8 > 925
  ## |   |   |   [9] V4 <= 1
  ## |   |   |   |   [10] V8 <= 1025 *
  ## |   |   |   |   [11] V8 > 1025 *
  ## |   |   |   [12] V4 > 1 *
  ## |   [13] V3 > 70 *
  ## 
  ## $nodes[[84]]
  ## [1] root
  ## |   [2] V5 <= 0
  ## |   |   [3] V2 <= 12
  ## |   |   |   [4] V9 <= 3 *
  ## |   |   |   [5] V9 > 3 *
  ## |   |   [6] V2 > 12 *
  ## |   [7] V5 > 0
  ## |   |   [8] V3 <= 50 *
  ## |   |   [9] V3 > 50
  ## |   |   |   [10] V5 <= 1
  ## |   |   |   |   [11] V2 <= 13
  ## |   |   |   |   |   [12] V9 <= 14 *
  ## |   |   |   |   |   [13] V9 > 14 *
  ## |   |   |   |   [14] V2 > 13 *
  ## |   |   |   [15] V5 > 1
  ## |   |   |   |   [16] V2 <= 13 *
  ## |   |   |   |   [17] V2 > 13 *
  ## 
  ## $nodes[[85]]
  ## [1] root
  ## |   [2] V7 <= 60
  ## |   |   [3] V9 <= 13 *
  ## |   |   [4] V9 > 13 *
  ## |   [5] V7 > 60
  ## |   |   [6] V6 <= 70 *
  ## |   |   [7] V6 > 70
  ## |   |   |   [8] V2 <= 13
  ## |   |   |   |   [9] V5 <= 0 *
  ## |   |   |   |   [10] V5 > 0
  ## |   |   |   |   |   [11] V9 <= 13 *
  ## |   |   |   |   |   [12] V9 > 13 *
  ## |   |   |   [13] V2 > 13 *
  ## 
  ## $nodes[[86]]
  ## [1] root
  ## |   [2] V4 <= 1
  ## |   |   [3] V9 <= 2 *
  ## |   |   [4] V9 > 2
  ## |   |   |   [5] V3 <= 70
  ## |   |   |   |   [6] V6 <= 80
  ## |   |   |   |   |   [7] V3 <= 62 *
  ## |   |   |   |   |   [8] V3 > 62 *
  ## |   |   |   |   [9] V6 > 80 *
  ## |   |   |   [10] V3 > 70 *
  ## |   [11] V4 > 1
  ## |   |   [12] V7 <= 90
  ## |   |   |   [13] V2 <= 12
  ## |   |   |   |   [14] V2 <= 3 *
  ## |   |   |   |   [15] V2 > 3 *
  ## |   |   |   [16] V2 > 12 *
  ## |   |   [17] V7 > 90 *
  ## 
  ## $nodes[[87]]
  ## [1] root
  ## |   [2] V7 <= 60
  ## |   |   [3] V9 <= 14 *
  ## |   |   [4] V9 > 14 *
  ## |   [5] V7 > 60
  ## |   |   [6] V5 <= 1
  ## |   |   |   [7] V9 <= 5
  ## |   |   |   |   [8] V6 <= 80 *
  ## |   |   |   |   [9] V6 > 80
  ## |   |   |   |   |   [10] V7 <= 80 *
  ## |   |   |   |   |   [11] V7 > 80
  ## |   |   |   |   |   |   [12] V5 <= 0 *
  ## |   |   |   |   |   |   [13] V5 > 0 *
  ## |   |   |   [14] V9 > 5
  ## |   |   |   |   [15] V4 <= 1 *
  ## |   |   |   |   [16] V4 > 1 *
  ## |   |   [17] V5 > 1 *
  ## 
  ## $nodes[[88]]
  ## [1] root
  ## |   [2] V4 <= 1
  ## |   |   [3] V8 <= 875
  ## |   |   |   [4] V3 <= 64 *
  ## |   |   |   [5] V3 > 64 *
  ## |   |   [6] V8 > 875
  ## |   |   |   [7] V7 <= 70 *
  ## |   |   |   [8] V7 > 70
  ## |   |   |   |   [9] V5 <= 0 *
  ## |   |   |   |   [10] V5 > 0 *
  ## |   [11] V4 > 1
  ## |   |   [12] V6 <= 70 *
  ## |   |   [13] V6 > 70
  ## |   |   |   [14] V9 <= 3 *
  ## |   |   |   [15] V9 > 3 *
  ## 
  ## $nodes[[89]]
  ## [1] root
  ## |   [2] V4 <= 1
  ## |   |   [3] V6 <= 70 *
  ## |   |   [4] V6 > 70
  ## |   |   |   [5] V2 <= 16
  ## |   |   |   |   [6] V8 <= 575 *
  ## |   |   |   |   [7] V8 > 575
  ## |   |   |   |   |   [8] V5 <= 0 *
  ## |   |   |   |   |   [9] V5 > 0 *
  ## |   |   |   [10] V2 > 16 *
  ## |   [11] V4 > 1
  ## |   |   [12] V6 <= 70 *
  ## |   |   [13] V6 > 70
  ## |   |   |   [14] V9 <= 14
  ## |   |   |   |   [15] V2 <= 5 *
  ## |   |   |   |   [16] V2 > 5 *
  ## |   |   |   [17] V9 > 14 *
  ## 
  ## $nodes[[90]]
  ## [1] root
  ## |   [2] V4 <= 1
  ## |   |   [3] V5 <= 0 *
  ## |   |   [4] V5 > 0
  ## |   |   |   [5] V8 <= 1275
  ## |   |   |   |   [6] V5 <= 1
  ## |   |   |   |   |   [7] V6 <= 80 *
  ## |   |   |   |   |   [8] V6 > 80 *
  ## |   |   |   |   [9] V5 > 1 *
  ## |   |   |   [10] V8 > 1275 *
  ## |   [11] V4 > 1
  ## |   |   [12] V6 <= 70 *
  ## |   |   [13] V6 > 70
  ## |   |   |   [14] V7 <= 80 *
  ## |   |   |   [15] V7 > 80 *
  ## 
  ## $nodes[[91]]
  ## [1] root
  ## |   [2] V7 <= 70
  ## |   |   [3] V7 <= 60 *
  ## |   |   [4] V7 > 60 *
  ## |   [5] V7 > 70
  ## |   |   [6] V4 <= 1
  ## |   |   |   [7] V5 <= 0 *
  ## |   |   |   [8] V5 > 0
  ## |   |   |   |   [9] V7 <= 80 *
  ## |   |   |   |   [10] V7 > 80 *
  ## |   |   [11] V4 > 1
  ## |   |   |   [12] V7 <= 80 *
  ## |   |   |   [13] V7 > 80 *
  ## 
  ## $nodes[[92]]
  ## [1] root
  ## |   [2] V5 <= 1
  ## |   |   [3] V7 <= 70 *
  ## |   |   [4] V7 > 70
  ## |   |   |   [5] V4 <= 1
  ## |   |   |   |   [6] V9 <= 5 *
  ## |   |   |   |   [7] V9 > 5 *
  ## |   |   |   [8] V4 > 1
  ## |   |   |   |   [9] V2 <= 12
  ## |   |   |   |   |   [10] V3 <= 64 *
  ## |   |   |   |   |   [11] V3 > 64 *
  ## |   |   |   |   [12] V2 > 12 *
  ## |   [13] V5 > 1
  ## |   |   [14] V9 <= 11 *
  ## |   |   [15] V9 > 11 *
  ## 
  ## $nodes[[93]]
  ## [1] root
  ## |   [2] V3 <= 51 *
  ## |   [3] V3 > 51
  ## |   |   [4] V4 <= 1
  ## |   |   |   [5] V7 <= 80
  ## |   |   |   |   [6] V3 <= 65 *
  ## |   |   |   |   [7] V3 > 65
  ## |   |   |   |   |   [8] V9 <= 17 *
  ## |   |   |   |   |   [9] V9 > 17 *
  ## |   |   |   [10] V7 > 80
  ## |   |   |   |   [11] V8 <= 993 *
  ## |   |   |   |   [12] V8 > 993 *
  ## |   |   [13] V4 > 1
  ## |   |   |   [14] V5 <= 0 *
  ## |   |   |   [15] V5 > 0
  ## |   |   |   |   [16] V3 <= 60 *
  ## |   |   |   |   [17] V3 > 60 *
  ## 
  ## $nodes[[94]]
  ## [1] root
  ## |   [2] V5 <= 1
  ## |   |   [3] V9 <= 12
  ## |   |   |   [4] V5 <= 0
  ## |   |   |   |   [5] V4 <= 1 *
  ## |   |   |   |   [6] V4 > 1 *
  ## |   |   |   [7] V5 > 0
  ## |   |   |   |   [8] V4 <= 1 *
  ## |   |   |   |   [9] V4 > 1 *
  ## |   |   [10] V9 > 12
  ## |   |   |   [11] V4 <= 1 *
  ## |   |   |   [12] V4 > 1 *
  ## |   [13] V5 > 1
  ## |   |   [14] V7 <= 60 *
  ## |   |   [15] V7 > 60 *
  ## 
  ## $nodes[[95]]
  ## [1] root
  ## |   [2] V3 <= 46 *
  ## |   [3] V3 > 46
  ## |   |   [4] V7 <= 60
  ## |   |   |   [5] V9 <= 13 *
  ## |   |   |   [6] V9 > 13 *
  ## |   |   [7] V7 > 60
  ## |   |   |   [8] V6 <= 70 *
  ## |   |   |   [9] V6 > 70
  ## |   |   |   |   [10] V3 <= 63
  ## |   |   |   |   |   [11] V5 <= 0 *
  ## |   |   |   |   |   [12] V5 > 0 *
  ## |   |   |   |   [13] V3 > 63
  ## |   |   |   |   |   [14] V8 <= 993 *
  ## |   |   |   |   |   [15] V8 > 993 *
  ## 
  ## $nodes[[96]]
  ## [1] root
  ## |   [2] V7 <= 60 *
  ## |   [3] V7 > 60
  ## |   |   [4] V3 <= 64
  ## |   |   |   [5] V9 <= 3
  ## |   |   |   |   [6] V9 <= -1 *
  ## |   |   |   |   [7] V9 > -1 *
  ## |   |   |   [8] V9 > 3
  ## |   |   |   |   [9] V5 <= 0 *
  ## |   |   |   |   [10] V5 > 0 *
  ## |   |   [11] V3 > 64
  ## |   |   |   [12] V5 <= 1
  ## |   |   |   |   [13] V3 <= 68 *
  ## |   |   |   |   [14] V3 > 68 *
  ## |   |   |   [15] V5 > 1 *
  ## 
  ## $nodes[[97]]
  ## [1] root
  ## |   [2] V4 <= 1
  ## |   |   [3] V5 <= 0 *
  ## |   |   [4] V5 > 0
  ## |   |   |   [5] V9 <= 24
  ## |   |   |   |   [6] V6 <= 70 *
  ## |   |   |   |   [7] V6 > 70 *
  ## |   |   |   [8] V9 > 24 *
  ## |   [9] V4 > 1
  ## |   |   [10] V5 <= 1
  ## |   |   |   [11] V9 <= 2 *
  ## |   |   |   [12] V9 > 2 *
  ## |   |   [13] V5 > 1 *
  ## 
  ## $nodes[[98]]
  ## [1] root
  ## |   [2] V7 <= 90
  ## |   |   [3] V5 <= 1
  ## |   |   |   [4] V9 <= 2
  ## |   |   |   |   [5] V5 <= 0 *
  ## |   |   |   |   [6] V5 > 0 *
  ## |   |   |   [7] V9 > 2
  ## |   |   |   |   [8] V8 <= 1175
  ## |   |   |   |   |   [9] V6 <= 80 *
  ## |   |   |   |   |   [10] V6 > 80 *
  ## |   |   |   |   [11] V8 > 1175 *
  ## |   |   [12] V5 > 1
  ## |   |   |   [13] V9 <= 20 *
  ## |   |   |   [14] V9 > 20 *
  ## |   [15] V7 > 90 *
  ## 
  ## $nodes[[99]]
  ## [1] root
  ## |   [2] V4 <= 1
  ## |   |   [3] V5 <= 0 *
  ## |   |   [4] V5 > 0
  ## |   |   |   [5] V8 <= 925
  ## |   |   |   |   [6] V8 <= 513 *
  ## |   |   |   |   [7] V8 > 513 *
  ## |   |   |   [8] V8 > 925
  ## |   |   |   |   [9] V3 <= 68
  ## |   |   |   |   |   [10] V2 <= 12 *
  ## |   |   |   |   |   [11] V2 > 12 *
  ## |   |   |   |   [12] V3 > 68 *
  ## |   [13] V4 > 1
  ## |   |   [14] V6 <= 80
  ## |   |   |   [15] V2 <= 13 *
  ## |   |   |   [16] V2 > 13 *
  ## |   |   [17] V6 > 80 *
  ## 
  ## $nodes[[100]]
  ## [1] root
  ## |   [2] V4 <= 1
  ## |   |   [3] V7 <= 60 *
  ## |   |   [4] V7 > 60
  ## |   |   |   [5] V5 <= 0 *
  ## |   |   |   [6] V5 > 0
  ## |   |   |   |   [7] V8 <= 993 *
  ## |   |   |   |   [8] V8 > 993
  ## |   |   |   |   |   [9] V5 <= 1 *
  ## |   |   |   |   |   [10] V5 > 1 *
  ## |   [11] V4 > 1
  ## |   |   [12] V9 <= 14
  ## |   |   |   [13] V6 <= 80 *
  ## |   |   |   [14] V6 > 80 *
  ## |   |   [15] V9 > 14 *
  ## 
  ## $nodes[[101]]
  ## [1] root
  ## |   [2] V8 <= 488
  ## |   |   [3] V9 <= 20 *
  ## |   |   [4] V9 > 20 *
  ## |   [5] V8 > 488
  ## |   |   [6] V5 <= 0
  ## |   |   |   [7] V4 <= 1 *
  ## |   |   |   [8] V4 > 1 *
  ## |   |   [9] V5 > 0
  ## |   |   |   [10] V7 <= 80
  ## |   |   |   |   [11] V6 <= 80
  ## |   |   |   |   |   [12] V3 <= 56 *
  ## |   |   |   |   |   [13] V3 > 56
  ## |   |   |   |   |   |   [14] V3 <= 65 *
  ## |   |   |   |   |   |   [15] V3 > 65 *
  ## |   |   |   |   [16] V6 > 80 *
  ## |   |   |   [17] V7 > 80
  ## |   |   |   |   [18] V8 <= 910 *
  ## |   |   |   |   [19] V8 > 910 *
  ## 
  ## $nodes[[102]]
  ## [1] root
  ## |   [2] V6 <= 70
  ## |   |   [3] V2 <= 13 *
  ## |   |   [4] V2 > 13 *
  ## |   [5] V6 > 70
  ## |   |   [6] V7 <= 90
  ## |   |   |   [7] V4 <= 1
  ## |   |   |   |   [8] V3 <= 59 *
  ## |   |   |   |   [9] V3 > 59
  ## |   |   |   |   |   [10] V5 <= 0 *
  ## |   |   |   |   |   [11] V5 > 0 *
  ## |   |   |   [12] V4 > 1
  ## |   |   |   |   [13] V3 <= 62 *
  ## |   |   |   |   [14] V3 > 62 *
  ## |   |   [15] V7 > 90 *
  ## 
  ## $nodes[[103]]
  ## [1] root
  ## |   [2] V6 <= 70
  ## |   |   [3] V7 <= 60 *
  ## |   |   [4] V7 > 60 *
  ## |   [5] V6 > 70
  ## |   |   [6] V4 <= 1
  ## |   |   |   [7] V3 <= 60 *
  ## |   |   |   [8] V3 > 60
  ## |   |   |   |   [9] V7 <= 70 *
  ## |   |   |   |   [10] V7 > 70 *
  ## |   |   [11] V4 > 1
  ## |   |   |   [12] V6 <= 80 *
  ## |   |   |   [13] V6 > 80 *
  ## 
  ## $nodes[[104]]
  ## [1] root
  ## |   [2] V5 <= 0
  ## |   |   [3] V8 <= 463 *
  ## |   |   [4] V8 > 463
  ## |   |   |   [5] V4 <= 1 *
  ## |   |   |   [6] V4 > 1 *
  ## |   [7] V5 > 0
  ## |   |   [8] V4 <= 1
  ## |   |   |   [9] V3 <= 71
  ## |   |   |   |   [10] V2 <= 15
  ## |   |   |   |   |   [11] V9 <= 17
  ## |   |   |   |   |   |   [12] V9 <= 1 *
  ## |   |   |   |   |   |   [13] V9 > 1 *
  ## |   |   |   |   |   [14] V9 > 17 *
  ## |   |   |   |   [15] V2 > 15 *
  ## |   |   |   [16] V3 > 71 *
  ## |   |   [17] V4 > 1
  ## |   |   |   [18] V5 <= 1 *
  ## |   |   |   [19] V5 > 1 *
  ## 
  ## $nodes[[105]]
  ## [1] root
  ## |   [2] V6 <= 70
  ## |   |   [3] V4 <= 1 *
  ## |   |   [4] V4 > 1 *
  ## |   [5] V6 > 70
  ## |   |   [6] V5 <= 0
  ## |   |   |   [7] V2 <= 13
  ## |   |   |   |   [8] V8 <= 725 *
  ## |   |   |   |   [9] V8 > 725 *
  ## |   |   |   [10] V2 > 13 *
  ## |   |   [11] V5 > 0
  ## |   |   |   [12] V8 <= 588 *
  ## |   |   |   [13] V8 > 588
  ## |   |   |   |   [14] V7 <= 70 *
  ## |   |   |   |   [15] V7 > 70
  ## |   |   |   |   |   [16] V3 <= 64 *
  ## |   |   |   |   |   [17] V3 > 64 *
  ## 
  ## $nodes[[106]]
  ## [1] root
  ## |   [2] V2 <= 12
  ## |   |   [3] V6 <= 90
  ## |   |   |   [4] V2 <= 2 *
  ## |   |   |   [5] V2 > 2
  ## |   |   |   |   [6] V3 <= 59 *
  ## |   |   |   |   [7] V3 > 59
  ## |   |   |   |   |   [8] V4 <= 1 *
  ## |   |   |   |   |   [9] V4 > 1 *
  ## |   |   [10] V6 > 90 *
  ## |   [11] V2 > 12
  ## |   |   [12] V2 <= 16 *
  ## |   |   [13] V2 > 16 *
  ## 
  ## $nodes[[107]]
  ## [1] root
  ## |   [2] V4 <= 1
  ## |   |   [3] V5 <= 1
  ## |   |   |   [4] V7 <= 70 *
  ## |   |   |   [5] V7 > 70
  ## |   |   |   |   [6] V9 <= 8
  ## |   |   |   |   |   [7] V5 <= 0 *
  ## |   |   |   |   |   [8] V5 > 0 *
  ## |   |   |   |   [9] V9 > 8 *
  ## |   |   [10] V5 > 1 *
  ## |   [11] V4 > 1
  ## |   |   [12] V9 <= -2 *
  ## |   |   [13] V9 > -2
  ## |   |   |   [14] V6 <= 80 *
  ## |   |   |   [15] V6 > 80 *
  ## 
  ## $nodes[[108]]
  ## [1] root
  ## |   [2] V5 <= 1
  ## |   |   [3] V4 <= 1
  ## |   |   |   [4] V9 <= 1 *
  ## |   |   |   [5] V9 > 1
  ## |   |   |   |   [6] V2 <= 11
  ## |   |   |   |   |   [7] V7 <= 80 *
  ## |   |   |   |   |   [8] V7 > 80 *
  ## |   |   |   |   [9] V2 > 11 *
  ## |   |   [10] V4 > 1
  ## |   |   |   [11] V8 <= 538 *
  ## |   |   |   [12] V8 > 538
  ## |   |   |   |   [13] V9 <= 0 *
  ## |   |   |   |   [14] V9 > 0 *
  ## |   [15] V5 > 1 *
  ## 
  ## $nodes[[109]]
  ## [1] root
  ## |   [2] V4 <= 1
  ## |   |   [3] V6 <= 70 *
  ## |   |   [4] V6 > 70
  ## |   |   |   [5] V9 <= 5
  ## |   |   |   |   [6] V3 <= 63 *
  ## |   |   |   |   [7] V3 > 63 *
  ## |   |   |   [8] V9 > 5
  ## |   |   |   |   [9] V8 <= 1100
  ## |   |   |   |   |   [10] V9 <= 14 *
  ## |   |   |   |   |   [11] V9 > 14 *
  ## |   |   |   |   [12] V8 > 1100 *
  ## |   [13] V4 > 1
  ## |   |   [14] V6 <= 80 *
  ## |   |   [15] V6 > 80 *
  ## 
  ## $nodes[[110]]
  ## [1] root
  ## |   [2] V4 <= 1
  ## |   |   [3] V3 <= 71
  ## |   |   |   [4] V5 <= 1
  ## |   |   |   |   [5] V2 <= 16
  ## |   |   |   |   |   [6] V7 <= 80
  ## |   |   |   |   |   |   [7] V9 <= 5 *
  ## |   |   |   |   |   |   [8] V9 > 5 *
  ## |   |   |   |   |   [9] V7 > 80 *
  ## |   |   |   |   [10] V2 > 16 *
  ## |   |   |   [11] V5 > 1 *
  ## |   |   [12] V3 > 71 *
  ## |   [13] V4 > 1
  ## |   |   [14] V7 <= 80
  ## |   |   |   [15] V5 <= 1 *
  ## |   |   |   [16] V5 > 1 *
  ## |   |   [17] V7 > 80 *
  ## 
  ## $nodes[[111]]
  ## [1] root
  ## |   [2] V4 <= 1
  ## |   |   [3] V6 <= 70 *
  ## |   |   [4] V6 > 70
  ## |   |   |   [5] V7 <= 90
  ## |   |   |   |   [6] V9 <= 14
  ## |   |   |   |   |   [7] V8 <= 1175
  ## |   |   |   |   |   |   [8] V9 <= 5 *
  ## |   |   |   |   |   |   [9] V9 > 5 *
  ## |   |   |   |   |   [10] V8 > 1175 *
  ## |   |   |   |   [11] V9 > 14 *
  ## |   |   |   [12] V7 > 90 *
  ## |   [13] V4 > 1
  ## |   |   [14] V9 <= 2 *
  ## |   |   [15] V9 > 2
  ## |   |   |   [16] V2 <= 12 *
  ## |   |   |   [17] V2 > 12 *
  ## 
  ## $nodes[[112]]
  ## [1] root
  ## |   [2] V5 <= 0
  ## |   |   [3] V9 <= 6 *
  ## |   |   [4] V9 > 6 *
  ## |   [5] V5 > 0
  ## |   |   [6] V9 <= 27
  ## |   |   |   [7] V5 <= 1
  ## |   |   |   |   [8] V4 <= 1
  ## |   |   |   |   |   [9] V2 <= 11 *
  ## |   |   |   |   |   [10] V2 > 11 *
  ## |   |   |   |   [11] V4 > 1 *
  ## |   |   |   [12] V5 > 1 *
  ## |   |   [13] V9 > 27 *
  ## 
  ## $nodes[[113]]
  ## [1] root
  ## |   [2] V5 <= 1
  ## |   |   [3] V9 <= 5
  ## |   |   |   [4] V6 <= 80 *
  ## |   |   |   [5] V6 > 80
  ## |   |   |   |   [6] V6 <= 90 *
  ## |   |   |   |   [7] V6 > 90 *
  ## |   |   [8] V9 > 5
  ## |   |   |   [9] V3 <= 64
  ## |   |   |   |   [10] V7 <= 80 *
  ## |   |   |   |   [11] V7 > 80 *
  ## |   |   |   [12] V3 > 64 *
  ## |   [13] V5 > 1
  ## |   |   [14] V4 <= 1 *
  ## |   |   [15] V4 > 1 *
  ## 
  ## $nodes[[114]]
  ## [1] root
  ## |   [2] V4 <= 1
  ## |   |   [3] V7 <= 60 *
  ## |   |   [4] V7 > 60
  ## |   |   |   [5] V8 <= 925
  ## |   |   |   |   [6] V3 <= 64 *
  ## |   |   |   |   [7] V3 > 64 *
  ## |   |   |   [8] V8 > 925
  ## |   |   |   |   [9] V5 <= 0 *
  ## |   |   |   |   [10] V5 > 0 *
  ## |   [11] V4 > 1
  ## |   |   [12] V7 <= 80 *
  ## |   |   [13] V7 > 80
  ## |   |   |   [14] V5 <= 0 *
  ## |   |   |   [15] V5 > 0 *
  ## 
  ## $nodes[[115]]
  ## [1] root
  ## |   [2] V5 <= 1
  ## |   |   [3] V3 <= 64
  ## |   |   |   [4] V7 <= 90
  ## |   |   |   |   [5] V5 <= 0 *
  ## |   |   |   |   [6] V5 > 0
  ## |   |   |   |   |   [7] V3 <= 53 *
  ## |   |   |   |   |   [8] V3 > 53 *
  ## |   |   |   [9] V7 > 90 *
  ## |   |   [10] V3 > 64
  ## |   |   |   [11] V6 <= 80 *
  ## |   |   |   [12] V6 > 80 *
  ## |   [13] V5 > 1
  ## |   |   [14] V6 <= 60 *
  ## |   |   [15] V6 > 60 *
  ## 
  ## $nodes[[116]]
  ## [1] root
  ## |   [2] V4 <= 1
  ## |   |   [3] V8 <= 1275
  ## |   |   |   [4] V5 <= 1
  ## |   |   |   |   [5] V9 <= 11
  ## |   |   |   |   |   [6] V5 <= 0 *
  ## |   |   |   |   |   [7] V5 > 0 *
  ## |   |   |   |   [8] V9 > 11 *
  ## |   |   |   [9] V5 > 1 *
  ## |   |   [10] V8 > 1275 *
  ## |   [11] V4 > 1
  ## |   |   [12] V2 <= 11 *
  ## |   |   [13] V2 > 11 *
  ## 
  ## $nodes[[117]]
  ## [1] root
  ## |   [2] V6 <= 80
  ## |   |   [3] V9 <= 27
  ## |   |   |   [4] V9 <= 1 *
  ## |   |   |   [5] V9 > 1
  ## |   |   |   |   [6] V5 <= 1 *
  ## |   |   |   |   [7] V5 > 1 *
  ## |   |   [8] V9 > 27 *
  ## |   [9] V6 > 80
  ## |   |   [10] V3 <= 64
  ## |   |   |   [11] V4 <= 1 *
  ## |   |   |   [12] V4 > 1 *
  ## |   |   [13] V3 > 64 *
  ## 
  ## $nodes[[118]]
  ## [1] root
  ## |   [2] V3 <= 45 *
  ## |   [3] V3 > 45
  ## |   |   [4] V5 <= 1
  ## |   |   |   [5] V2 <= 1 *
  ## |   |   |   [6] V2 > 1
  ## |   |   |   |   [7] V7 <= 90
  ## |   |   |   |   |   [8] V3 <= 66
  ## |   |   |   |   |   |   [9] V5 <= 0 *
  ## |   |   |   |   |   |   [10] V5 > 0 *
  ## |   |   |   |   |   [11] V3 > 66 *
  ## |   |   |   |   [12] V7 > 90 *
  ## |   |   [13] V5 > 1
  ## |   |   |   [14] V2 <= 13 *
  ## |   |   |   [15] V2 > 13 *
  ## 
  ## $nodes[[119]]
  ## [1] root
  ## |   [2] V3 <= 64
  ## |   |   [3] V5 <= 0 *
  ## |   |   [4] V5 > 0
  ## |   |   |   [5] V3 <= 50 *
  ## |   |   |   [6] V3 > 50
  ## |   |   |   |   [7] V8 <= 768 *
  ## |   |   |   |   [8] V8 > 768
  ## |   |   |   |   |   [9] V9 <= 5 *
  ## |   |   |   |   |   [10] V9 > 5 *
  ## |   [11] V3 > 64
  ## |   |   [12] V2 <= 5 *
  ## |   |   [13] V2 > 5
  ## |   |   |   [14] V8 <= 875 *
  ## |   |   |   [15] V8 > 875
  ## |   |   |   |   [16] V2 <= 15 *
  ## |   |   |   |   [17] V2 > 15 *
  ## 
  ## $nodes[[120]]
  ## [1] root
  ## |   [2] V5 <= 1
  ## |   |   [3] V4 <= 1
  ## |   |   |   [4] V5 <= 0 *
  ## |   |   |   [5] V5 > 0
  ## |   |   |   |   [6] V6 <= 80 *
  ## |   |   |   |   [7] V6 > 80 *
  ## |   |   [8] V4 > 1
  ## |   |   |   [9] V9 <= 1 *
  ## |   |   |   [10] V9 > 1 *
  ## |   [11] V5 > 1
  ## |   |   [12] V8 <= 910 *
  ## |   |   [13] V8 > 910 *
  ## 
  ## $nodes[[121]]
  ## [1] root
  ## |   [2] V5 <= 1
  ## |   |   [3] V4 <= 1
  ## |   |   |   [4] V7 <= 90
  ## |   |   |   |   [5] V5 <= 0 *
  ## |   |   |   |   [6] V5 > 0
  ## |   |   |   |   |   [7] V7 <= 70 *
  ## |   |   |   |   |   [8] V7 > 70 *
  ## |   |   |   [9] V7 > 90 *
  ## |   |   [10] V4 > 1
  ## |   |   |   [11] V6 <= 80 *
  ## |   |   |   [12] V6 > 80 *
  ## |   [13] V5 > 1
  ## |   |   [14] V4 <= 1 *
  ## |   |   [15] V4 > 1 *
  ## 
  ## $nodes[[122]]
  ## [1] root
  ## |   [2] V6 <= 70
  ## |   |   [3] V5 <= 1 *
  ## |   |   [4] V5 > 1 *
  ## |   [5] V6 > 70
  ## |   |   [6] V7 <= 70 *
  ## |   |   [7] V7 > 70
  ## |   |   |   [8] V3 <= 64
  ## |   |   |   |   [9] V2 <= 12
  ## |   |   |   |   |   [10] V9 <= 1 *
  ## |   |   |   |   |   [11] V9 > 1 *
  ## |   |   |   |   [12] V2 > 12 *
  ## |   |   |   [13] V3 > 64
  ## |   |   |   |   [14] V8 <= 1030 *
  ## |   |   |   |   [15] V8 > 1030 *
  ## 
  ## $nodes[[123]]
  ## [1] root
  ## |   [2] V5 <= 0
  ## |   |   [3] V3 <= 60 *
  ## |   |   [4] V3 > 60 *
  ## |   [5] V5 > 0
  ## |   |   [6] V6 <= 70
  ## |   |   |   [7] V2 <= 13 *
  ## |   |   |   [8] V2 > 13 *
  ## |   |   [9] V6 > 70
  ## |   |   |   [10] V7 <= 90
  ## |   |   |   |   [11] V3 <= 54 *
  ## |   |   |   |   [12] V3 > 54
  ## |   |   |   |   |   [13] V4 <= 1 *
  ## |   |   |   |   |   [14] V4 > 1 *
  ## |   |   |   [15] V7 > 90 *
  ## 
  ## $nodes[[124]]
  ## [1] root
  ## |   [2] V4 <= 1
  ## |   |   [3] V5 <= 0 *
  ## |   |   [4] V5 > 0
  ## |   |   |   [5] V5 <= 1
  ## |   |   |   |   [6] V3 <= 63 *
  ## |   |   |   |   [7] V3 > 63 *
  ## |   |   |   [8] V5 > 1 *
  ## |   [9] V4 > 1
  ## |   |   [10] V6 <= 60 *
  ## |   |   [11] V6 > 60
  ## |   |   |   [12] V3 <= 64
  ## |   |   |   |   [13] V3 <= 58 *
  ## |   |   |   |   [14] V3 > 58 *
  ## |   |   |   [15] V3 > 64 *
  ## 
  ## $nodes[[125]]
  ## [1] root
  ## |   [2] V7 <= 70
  ## |   |   [3] V9 <= 24
  ## |   |   |   [4] V4 <= 1
  ## |   |   |   |   [5] V5 <= 1 *
  ## |   |   |   |   [6] V5 > 1 *
  ## |   |   |   [7] V4 > 1 *
  ## |   |   [8] V9 > 24 *
  ## |   [9] V7 > 70
  ## |   |   [10] V4 <= 1
  ## |   |   |   [11] V9 <= 6
  ## |   |   |   |   [12] V5 <= 0 *
  ## |   |   |   |   [13] V5 > 0 *
  ## |   |   |   [14] V9 > 6 *
  ## |   |   [15] V4 > 1
  ## |   |   |   [16] V7 <= 90
  ## |   |   |   |   [17] V2 <= 12 *
  ## |   |   |   |   [18] V2 > 12 *
  ## |   |   |   [19] V7 > 90 *
  ## 
  ## $nodes[[126]]
  ## [1] root
  ## |   [2] V7 <= 70
  ## |   |   [3] V2 <= 3 *
  ## |   |   [4] V2 > 3
  ## |   |   |   [5] V3 <= 63 *
  ## |   |   |   [6] V3 > 63
  ## |   |   |   |   [7] V9 <= 11 *
  ## |   |   |   |   [8] V9 > 11 *
  ## |   [9] V7 > 70
  ## |   |   [10] V7 <= 90
  ## |   |   |   [11] V9 <= 6
  ## |   |   |   |   [12] V6 <= 80 *
  ## |   |   |   |   [13] V6 > 80 *
  ## |   |   |   [14] V9 > 6
  ## |   |   |   |   [15] V6 <= 80 *
  ## |   |   |   |   [16] V6 > 80 *
  ## |   |   [17] V7 > 90 *
  ## 
  ## $nodes[[127]]
  ## [1] root
  ## |   [2] V5 <= 1
  ## |   |   [3] V6 <= 80
  ## |   |   |   [4] V7 <= 80 *
  ## |   |   |   [5] V7 > 80 *
  ## |   |   [6] V6 > 80
  ## |   |   |   [7] V4 <= 1
  ## |   |   |   |   [8] V8 <= 875 *
  ## |   |   |   |   [9] V8 > 875
  ## |   |   |   |   |   [10] V2 <= 13 *
  ## |   |   |   |   |   [11] V2 > 13 *
  ## |   |   |   [12] V4 > 1
  ## |   |   |   |   [13] V3 <= 58 *
  ## |   |   |   |   [14] V3 > 58 *
  ## |   [15] V5 > 1
  ## |   |   [16] V2 <= 12 *
  ## |   |   [17] V2 > 12 *
  ## 
  ## $nodes[[128]]
  ## [1] root
  ## |   [2] V3 <= 45 *
  ## |   [3] V3 > 45
  ## |   |   [4] V6 <= 80
  ## |   |   |   [5] V4 <= 1
  ## |   |   |   |   [6] V9 <= 20
  ## |   |   |   |   |   [7] V6 <= 70 *
  ## |   |   |   |   |   [8] V6 > 70 *
  ## |   |   |   |   [9] V9 > 20 *
  ## |   |   |   [10] V4 > 1
  ## |   |   |   |   [11] V6 <= 70 *
  ## |   |   |   |   [12] V6 > 70 *
  ## |   |   [13] V6 > 80
  ## |   |   |   [14] V7 <= 80 *
  ## |   |   |   [15] V7 > 80
  ## |   |   |   |   [16] V9 <= 3 *
  ## |   |   |   |   [17] V9 > 3 *
  ## 
  ## $nodes[[129]]
  ## [1] root
  ## |   [2] V5 <= 0
  ## |   |   [3] V4 <= 1 *
  ## |   |   [4] V4 > 1 *
  ## |   [5] V5 > 0
  ## |   |   [6] V4 <= 1
  ## |   |   |   [7] V5 <= 1
  ## |   |   |   |   [8] V7 <= 80
  ## |   |   |   |   |   [9] V7 <= 70 *
  ## |   |   |   |   |   [10] V7 > 70 *
  ## |   |   |   |   [11] V7 > 80 *
  ## |   |   |   [12] V5 > 1 *
  ## |   |   [13] V4 > 1
  ## |   |   |   [14] V2 <= 12 *
  ## |   |   |   [15] V2 > 12 *
  ## 
  ## $nodes[[130]]
  ## [1] root
  ## |   [2] V3 <= 47 *
  ## |   [3] V3 > 47
  ## |   |   [4] V4 <= 1
  ## |   |   |   [5] V7 <= 60 *
  ## |   |   |   [6] V7 > 60
  ## |   |   |   |   [7] V2 <= 16
  ## |   |   |   |   |   [8] V8 <= 875 *
  ## |   |   |   |   |   [9] V8 > 875
  ## |   |   |   |   |   |   [10] V7 <= 80 *
  ## |   |   |   |   |   |   [11] V7 > 80 *
  ## |   |   |   |   [12] V2 > 16 *
  ## |   |   [13] V4 > 1
  ## |   |   |   [14] V6 <= 90
  ## |   |   |   |   [15] V7 <= 80 *
  ## |   |   |   |   [16] V7 > 80 *
  ## |   |   |   [17] V6 > 90 *
  ## 
  ## $nodes[[131]]
  ## [1] root
  ## |   [2] V7 <= 60 *
  ## |   [3] V7 > 60
  ## |   |   [4] V3 <= 70
  ## |   |   |   [5] V7 <= 90
  ## |   |   |   |   [6] V5 <= 0
  ## |   |   |   |   |   [7] V8 <= 1039 *
  ## |   |   |   |   |   [8] V8 > 1039 *
  ## |   |   |   |   [9] V5 > 0
  ## |   |   |   |   |   [10] V9 <= 12 *
  ## |   |   |   |   |   [11] V9 > 12 *
  ## |   |   |   [12] V7 > 90 *
  ## |   |   [13] V3 > 70 *
  ## 
  ## $nodes[[132]]
  ## [1] root
  ## |   [2] V4 <= 1
  ## |   |   [3] V6 <= 70 *
  ## |   |   [4] V6 > 70
  ## |   |   |   [5] V2 <= 4 *
  ## |   |   |   [6] V2 > 4
  ## |   |   |   |   [7] V3 <= 60 *
  ## |   |   |   |   [8] V3 > 60
  ## |   |   |   |   |   [9] V8 <= 1030
  ## |   |   |   |   |   |   [10] V6 <= 80 *
  ## |   |   |   |   |   |   [11] V6 > 80 *
  ## |   |   |   |   |   [12] V8 > 1030 *
  ## |   [13] V4 > 1
  ## |   |   [14] V5 <= 1
  ## |   |   |   [15] V3 <= 60
  ## |   |   |   |   [16] V6 <= 80 *
  ## |   |   |   |   [17] V6 > 80 *
  ## |   |   |   [18] V3 > 60 *
  ## |   |   [19] V5 > 1 *
  ## 
  ## $nodes[[133]]
  ## [1] root
  ## |   [2] V5 <= 1
  ## |   |   [3] V4 <= 1
  ## |   |   |   [4] V8 <= 1125
  ## |   |   |   |   [5] V9 <= 14
  ## |   |   |   |   |   [6] V7 <= 70 *
  ## |   |   |   |   |   [7] V7 > 70 *
  ## |   |   |   |   [8] V9 > 14 *
  ## |   |   |   [9] V8 > 1125 *
  ## |   |   [10] V4 > 1
  ## |   |   |   [11] V7 <= 90
  ## |   |   |   |   [12] V2 <= 12
  ## |   |   |   |   |   [13] V8 <= 925 *
  ## |   |   |   |   |   [14] V8 > 925 *
  ## |   |   |   |   [15] V2 > 12 *
  ## |   |   |   [16] V7 > 90 *
  ## |   [17] V5 > 1 *
  ## 
  ## $nodes[[134]]
  ## [1] root
  ## |   [2] V6 <= 70
  ## |   |   [3] V9 <= 20
  ## |   |   |   [4] V4 <= 1 *
  ## |   |   |   [5] V4 > 1 *
  ## |   |   [6] V9 > 20 *
  ## |   [7] V6 > 70
  ## |   |   [8] V7 <= 70 *
  ## |   |   [9] V7 > 70
  ## |   |   |   [10] V5 <= 0
  ## |   |   |   |   [11] V7 <= 90 *
  ## |   |   |   |   [12] V7 > 90 *
  ## |   |   |   [13] V5 > 0
  ## |   |   |   |   [14] V7 <= 90
  ## |   |   |   |   |   [15] V2 <= 12 *
  ## |   |   |   |   |   [16] V2 > 12 *
  ## |   |   |   |   [17] V7 > 90 *
  ## 
  ## $nodes[[135]]
  ## [1] root
  ## |   [2] V5 <= 1
  ## |   |   [3] V4 <= 1
  ## |   |   |   [4] V3 <= 65
  ## |   |   |   |   [5] V2 <= 4 *
  ## |   |   |   |   [6] V2 > 4
  ## |   |   |   |   |   [7] V8 <= 1025 *
  ## |   |   |   |   |   [8] V8 > 1025 *
  ## |   |   |   [9] V3 > 65 *
  ## |   |   [10] V4 > 1
  ## |   |   |   [11] V7 <= 80 *
  ## |   |   |   [12] V7 > 80 *
  ## |   [13] V5 > 1
  ## |   |   [14] V2 <= 13
  ## |   |   |   [15] V8 <= 910 *
  ## |   |   |   [16] V8 > 910 *
  ## |   |   [17] V2 > 13 *
  ## 
  ## $nodes[[136]]
  ## [1] root
  ## |   [2] V5 <= 1
  ## |   |   [3] V4 <= 1
  ## |   |   |   [4] V3 <= 65
  ## |   |   |   |   [5] V5 <= 0 *
  ## |   |   |   |   [6] V5 > 0 *
  ## |   |   |   [7] V3 > 65
  ## |   |   |   |   [8] V9 <= 7 *
  ## |   |   |   |   [9] V9 > 7 *
  ## |   |   [10] V4 > 1
  ## |   |   |   [11] V9 <= 0 *
  ## |   |   |   [12] V9 > 0 *
  ## |   [13] V5 > 1
  ## |   |   [14] V2 <= 13 *
  ## |   |   [15] V2 > 13 *
  ## 
  ## $nodes[[137]]
  ## [1] root
  ## |   [2] V4 <= 1
  ## |   |   [3] V3 <= 71
  ## |   |   |   [4] V8 <= 925 *
  ## |   |   |   [5] V8 > 925
  ## |   |   |   |   [6] V3 <= 53 *
  ## |   |   |   |   [7] V3 > 53
  ## |   |   |   |   |   [8] V6 <= 80 *
  ## |   |   |   |   |   [9] V6 > 80 *
  ## |   |   [10] V3 > 71 *
  ## |   [11] V4 > 1
  ## |   |   [12] V7 <= 90
  ## |   |   |   [13] V2 <= 15
  ## |   |   |   |   [14] V5 <= 0 *
  ## |   |   |   |   [15] V5 > 0 *
  ## |   |   |   [16] V2 > 15 *
  ## |   |   [17] V7 > 90 *
  ## 
  ## $nodes[[138]]
  ## [1] root
  ## |   [2] V5 <= 1
  ## |   |   [3] V4 <= 1
  ## |   |   |   [4] V3 <= 64
  ## |   |   |   |   [5] V9 <= 2 *
  ## |   |   |   |   [6] V9 > 2 *
  ## |   |   |   [7] V3 > 64 *
  ## |   |   [8] V4 > 1
  ## |   |   |   [9] V2 <= 11 *
  ## |   |   |   [10] V2 > 11 *
  ## |   [11] V5 > 1
  ## |   |   [12] V4 <= 1 *
  ## |   |   [13] V4 > 1 *
  ## 
  ## $nodes[[139]]
  ## [1] root
  ## |   [2] V4 <= 1
  ## |   |   [3] V5 <= 1
  ## |   |   |   [4] V3 <= 68
  ## |   |   |   |   [5] V6 <= 80 *
  ## |   |   |   |   [6] V6 > 80
  ## |   |   |   |   |   [7] V2 <= 5 *
  ## |   |   |   |   |   [8] V2 > 5 *
  ## |   |   |   [9] V3 > 68 *
  ## |   |   [10] V5 > 1 *
  ## |   [11] V4 > 1
  ## |   |   [12] V9 <= -1 *
  ## |   |   [13] V9 > -1
  ## |   |   |   [14] V7 <= 70 *
  ## |   |   |   [15] V7 > 70
  ## |   |   |   |   [16] V6 <= 80 *
  ## |   |   |   |   [17] V6 > 80 *
  ## 
  ## $nodes[[140]]
  ## [1] root
  ## |   [2] V6 <= 70
  ## |   |   [3] V4 <= 1 *
  ## |   |   [4] V4 > 1 *
  ## |   [5] V6 > 70
  ## |   |   [6] V3 <= 64
  ## |   |   |   [7] V2 <= 10
  ## |   |   |   |   [8] V7 <= 80 *
  ## |   |   |   |   [9] V7 > 80 *
  ## |   |   |   [10] V2 > 10
  ## |   |   |   |   [11] V6 <= 80 *
  ## |   |   |   |   [12] V6 > 80 *
  ## |   |   [13] V3 > 64
  ## |   |   |   [14] V8 <= 1030 *
  ## |   |   |   [15] V8 > 1030 *
  ## 
  ## $nodes[[141]]
  ## [1] root
  ## |   [2] V5 <= 1
  ## |   |   [3] V7 <= 70 *
  ## |   |   [4] V7 > 70
  ## |   |   |   [5] V4 <= 1
  ## |   |   |   |   [6] V6 <= 80 *
  ## |   |   |   |   [7] V6 > 80
  ## |   |   |   |   |   [8] V8 <= 1039 *
  ## |   |   |   |   |   [9] V8 > 1039 *
  ## |   |   |   [10] V4 > 1
  ## |   |   |   |   [11] V3 <= 51 *
  ## |   |   |   |   [12] V3 > 51
  ## |   |   |   |   |   [13] V2 <= 6 *
  ## |   |   |   |   |   [14] V2 > 6 *
  ## |   [15] V5 > 1
  ## |   |   [16] V2 <= 13 *
  ## |   |   [17] V2 > 13 *
  ## 
  ## $nodes[[142]]
  ## [1] root
  ## |   [2] V5 <= 1
  ## |   |   [3] V3 <= 64
  ## |   |   |   [4] V7 <= 90
  ## |   |   |   |   [5] V7 <= 70 *
  ## |   |   |   |   [6] V7 > 70
  ## |   |   |   |   |   [7] V9 <= 1 *
  ## |   |   |   |   |   [8] V9 > 1 *
  ## |   |   |   [9] V7 > 90 *
  ## |   |   [10] V3 > 64
  ## |   |   |   [11] V5 <= 0 *
  ## |   |   |   [12] V5 > 0
  ## |   |   |   |   [13] V3 <= 69 *
  ## |   |   |   |   [14] V3 > 69 *
  ## |   [15] V5 > 1
  ## |   |   [16] V9 <= 20 *
  ## |   |   [17] V9 > 20 *
  ## 
  ## $nodes[[143]]
  ## [1] root
  ## |   [2] V6 <= 60 *
  ## |   [3] V6 > 60
  ## |   |   [4] V5 <= 1
  ## |   |   |   [5] V9 <= 8
  ## |   |   |   |   [6] V7 <= 80 *
  ## |   |   |   |   [7] V7 > 80
  ## |   |   |   |   |   [8] V6 <= 90
  ## |   |   |   |   |   |   [9] V8 <= 975 *
  ## |   |   |   |   |   |   [10] V8 > 975 *
  ## |   |   |   |   |   [11] V6 > 90 *
  ## |   |   |   [12] V9 > 8
  ## |   |   |   |   [13] V4 <= 1
  ## |   |   |   |   |   [14] V2 <= 11 *
  ## |   |   |   |   |   [15] V2 > 11 *
  ## |   |   |   |   [16] V4 > 1 *
  ## |   |   [17] V5 > 1 *
  ## 
  ## $nodes[[144]]
  ## [1] root
  ## |   [2] V3 <= 63
  ## |   |   [3] V2 <= 10
  ## |   |   |   [4] V5 <= 0 *
  ## |   |   |   [5] V5 > 0 *
  ## |   |   [6] V2 > 10
  ## |   |   |   [7] V8 <= 1025 *
  ## |   |   |   [8] V8 > 1025 *
  ## |   [9] V3 > 63
  ## |   |   [10] V9 <= 27
  ## |   |   |   [11] V5 <= 1
  ## |   |   |   |   [12] V5 <= 0 *
  ## |   |   |   |   [13] V5 > 0
  ## |   |   |   |   |   [14] V7 <= 70 *
  ## |   |   |   |   |   [15] V7 > 70 *
  ## |   |   |   [16] V5 > 1 *
  ## |   |   [17] V9 > 27 *
  ## 
  ## $nodes[[145]]
  ## [1] root
  ## |   [2] V6 <= 70
  ## |   |   [3] V9 <= 20
  ## |   |   |   [4] V4 <= 1 *
  ## |   |   |   [5] V4 > 1 *
  ## |   |   [6] V9 > 20 *
  ## |   [7] V6 > 70
  ## |   |   [8] V4 <= 1
  ## |   |   |   [9] V9 <= 6 *
  ## |   |   |   [10] V9 > 6
  ## |   |   |   |   [11] V7 <= 80 *
  ## |   |   |   |   [12] V7 > 80 *
  ## |   |   [13] V4 > 1
  ## |   |   |   [14] V9 <= 14
  ## |   |   |   |   [15] V2 <= 11 *
  ## |   |   |   |   [16] V2 > 11 *
  ## |   |   |   [17] V9 > 14 *
  ## 
  ## $nodes[[146]]
  ## [1] root
  ## |   [2] V5 <= 1
  ## |   |   [3] V7 <= 90
  ## |   |   |   [4] V5 <= 0
  ## |   |   |   |   [5] V8 <= 775 *
  ## |   |   |   |   [6] V8 > 775 *
  ## |   |   |   [7] V5 > 0
  ## |   |   |   |   [8] V4 <= 1
  ## |   |   |   |   |   [9] V7 <= 80 *
  ## |   |   |   |   |   [10] V7 > 80 *
  ## |   |   |   |   [11] V4 > 1 *
  ## |   |   [12] V7 > 90 *
  ## |   [13] V5 > 1
  ## |   |   [14] V6 <= 60 *
  ## |   |   [15] V6 > 60 *
  ## 
  ## $nodes[[147]]
  ## [1] root
  ## |   [2] V7 <= 60 *
  ## |   [3] V7 > 60
  ## |   |   [4] V5 <= 0
  ## |   |   |   [5] V3 <= 64 *
  ## |   |   |   [6] V3 > 64 *
  ## |   |   [7] V5 > 0
  ## |   |   |   [8] V5 <= 1
  ## |   |   |   |   [9] V6 <= 80
  ## |   |   |   |   |   [10] V2 <= 13
  ## |   |   |   |   |   |   [11] V7 <= 70 *
  ## |   |   |   |   |   |   [12] V7 > 70 *
  ## |   |   |   |   |   [13] V2 > 13 *
  ## |   |   |   |   [14] V6 > 80 *
  ## |   |   |   [15] V5 > 1 *
  ## 
  ## $nodes[[148]]
  ## [1] root
  ## |   [2] V5 <= 1
  ## |   |   [3] V4 <= 1
  ## |   |   |   [4] V6 <= 80 *
  ## |   |   |   [5] V6 > 80
  ## |   |   |   |   [6] V8 <= 1175
  ## |   |   |   |   |   [7] V2 <= 11 *
  ## |   |   |   |   |   [8] V2 > 11 *
  ## |   |   |   |   [9] V8 > 1175 *
  ## |   |   [10] V4 > 1
  ## |   |   |   [11] V3 <= 63
  ## |   |   |   |   [12] V2 <= 10 *
  ## |   |   |   |   [13] V2 > 10 *
  ## |   |   |   [14] V3 > 63 *
  ## |   [15] V5 > 1
  ## |   |   [16] V6 <= 60 *
  ## |   |   [17] V6 > 60 *
  ## 
  ## $nodes[[149]]
  ## [1] root
  ## |   [2] V4 <= 1
  ## |   |   [3] V5 <= 1
  ## |   |   |   [4] V2 <= 4 *
  ## |   |   |   [5] V2 > 4
  ## |   |   |   |   [6] V9 <= 15
  ## |   |   |   |   |   [7] V7 <= 90
  ## |   |   |   |   |   |   [8] V8 <= 993 *
  ## |   |   |   |   |   |   [9] V8 > 993 *
  ## |   |   |   |   |   [10] V7 > 90 *
  ## |   |   |   |   [11] V9 > 15 *
  ## |   |   [12] V5 > 1 *
  ## |   [13] V4 > 1
  ## |   |   [14] V5 <= 0 *
  ## |   |   [15] V5 > 0
  ## |   |   |   [16] V5 <= 1 *
  ## |   |   |   [17] V5 > 1 *
  ## 
  ## $nodes[[150]]
  ## [1] root
  ## |   [2] V6 <= 70
  ## |   |   [3] V7 <= 60 *
  ## |   |   [4] V7 > 60 *
  ## |   [5] V6 > 70
  ## |   |   [6] V5 <= 0
  ## |   |   |   [7] V7 <= 80 *
  ## |   |   |   [8] V7 > 80 *
  ## |   |   [9] V5 > 0
  ## |   |   |   [10] V9 <= 14
  ## |   |   |   |   [11] V7 <= 80
  ## |   |   |   |   |   [12] V2 <= 13 *
  ## |   |   |   |   |   [13] V2 > 13 *
  ## |   |   |   |   [14] V7 > 80 *
  ## |   |   |   [15] V9 > 14 *
  ## 
  ## $nodes[[151]]
  ## [1] root
  ## |   [2] V6 <= 70
  ## |   |   [3] V2 <= 12 *
  ## |   |   [4] V2 > 12 *
  ## |   [5] V6 > 70
  ## |   |   [6] V4 <= 1
  ## |   |   |   [7] V3 <= 47 *
  ## |   |   |   [8] V3 > 47
  ## |   |   |   |   [9] V8 <= 1125
  ## |   |   |   |   |   [10] V3 <= 60 *
  ## |   |   |   |   |   [11] V3 > 60
  ## |   |   |   |   |   |   [12] V7 <= 80 *
  ## |   |   |   |   |   |   [13] V7 > 80 *
  ## |   |   |   |   [14] V8 > 1125 *
  ## |   |   [15] V4 > 1
  ## |   |   |   [16] V9 <= 0 *
  ## |   |   |   [17] V9 > 0 *
  ## 
  ## $nodes[[152]]
  ## [1] root
  ## |   [2] V6 <= 70
  ## |   |   [3] V7 <= 70
  ## |   |   |   [4] V9 <= 3 *
  ## |   |   |   [5] V9 > 3 *
  ## |   |   [6] V7 > 70 *
  ## |   [7] V6 > 70
  ## |   |   [8] V4 <= 1
  ## |   |   |   [9] V5 <= 0 *
  ## |   |   |   [10] V5 > 0
  ## |   |   |   |   [11] V6 <= 80 *
  ## |   |   |   |   [12] V6 > 80 *
  ## |   |   [13] V4 > 1
  ## |   |   |   [14] V6 <= 90
  ## |   |   |   |   [15] V7 <= 80 *
  ## |   |   |   |   [16] V7 > 80 *
  ## |   |   |   [17] V6 > 90 *
  ## 
  ## $nodes[[153]]
  ## [1] root
  ## |   [2] V3 <= 65
  ## |   |   [3] V7 <= 90
  ## |   |   |   [4] V9 <= 3 *
  ## |   |   |   [5] V9 > 3
  ## |   |   |   |   [6] V6 <= 70 *
  ## |   |   |   |   [7] V6 > 70
  ## |   |   |   |   |   [8] V2 <= 4 *
  ## |   |   |   |   |   [9] V2 > 4 *
  ## |   |   [10] V7 > 90 *
  ## |   [11] V3 > 65
  ## |   |   [12] V3 <= 71
  ## |   |   |   [13] V8 <= 875 *
  ## |   |   |   [14] V8 > 875
  ## |   |   |   |   [15] V2 <= 12 *
  ## |   |   |   |   [16] V2 > 12 *
  ## |   |   [17] V3 > 71 *
  ## 
  ## $nodes[[154]]
  ## [1] root
  ## |   [2] V3 <= 44 *
  ## |   [3] V3 > 44
  ## |   |   [4] V5 <= 1
  ## |   |   |   [5] V9 <= 23
  ## |   |   |   |   [6] V4 <= 1
  ## |   |   |   |   |   [7] V6 <= 90
  ## |   |   |   |   |   |   [8] V2 <= 7 *
  ## |   |   |   |   |   |   [9] V2 > 7 *
  ## |   |   |   |   |   [10] V6 > 90 *
  ## |   |   |   |   [11] V4 > 1
  ## |   |   |   |   |   [12] V2 <= 12 *
  ## |   |   |   |   |   [13] V2 > 12 *
  ## |   |   |   [14] V9 > 23 *
  ## |   |   [15] V5 > 1
  ## |   |   |   [16] V6 <= 60 *
  ## |   |   |   [17] V6 > 60 *
  ## 
  ## $nodes[[155]]
  ## [1] root
  ## |   [2] V7 <= 60 *
  ## |   [3] V7 > 60
  ## |   |   [4] V4 <= 1
  ## |   |   |   [5] V3 <= 70
  ## |   |   |   |   [6] V5 <= 0 *
  ## |   |   |   |   [7] V5 > 0
  ## |   |   |   |   |   [8] V2 <= 13
  ## |   |   |   |   |   |   [9] V2 <= 11 *
  ## |   |   |   |   |   |   [10] V2 > 11 *
  ## |   |   |   |   |   [11] V2 > 13 *
  ## |   |   |   [12] V3 > 70 *
  ## |   |   [13] V4 > 1
  ## |   |   |   [14] V7 <= 90
  ## |   |   |   |   [15] V2 <= 12 *
  ## |   |   |   |   [16] V2 > 12 *
  ## |   |   |   [17] V7 > 90 *
  ## 
  ## $nodes[[156]]
  ## [1] root
  ## |   [2] V7 <= 90
  ## |   |   [3] V3 <= 63
  ## |   |   |   [4] V7 <= 60 *
  ## |   |   |   [5] V7 > 60
  ## |   |   |   |   [6] V5 <= 0 *
  ## |   |   |   |   [7] V5 > 0
  ## |   |   |   |   |   [8] V4 <= 1 *
  ## |   |   |   |   |   [9] V4 > 1 *
  ## |   |   [10] V3 > 63
  ## |   |   |   [11] V8 <= 1125
  ## |   |   |   |   [12] V2 <= 15
  ## |   |   |   |   |   [13] V3 <= 71
  ## |   |   |   |   |   |   [14] V3 <= 68 *
  ## |   |   |   |   |   |   [15] V3 > 68 *
  ## |   |   |   |   |   [16] V3 > 71 *
  ## |   |   |   |   [17] V2 > 15 *
  ## |   |   |   [18] V8 > 1125 *
  ## |   [19] V7 > 90 *
  ## 
  ## $nodes[[157]]
  ## [1] root
  ## |   [2] V5 <= 1
  ## |   |   [3] V3 <= 60
  ## |   |   |   [4] V5 <= 0 *
  ## |   |   |   [5] V5 > 0 *
  ## |   |   [6] V3 > 60
  ## |   |   |   [7] V9 <= 14
  ## |   |   |   |   [8] V4 <= 1
  ## |   |   |   |   |   [9] V9 <= 2 *
  ## |   |   |   |   |   [10] V9 > 2 *
  ## |   |   |   |   [11] V4 > 1 *
  ## |   |   |   [12] V9 > 14 *
  ## |   [13] V5 > 1
  ## |   |   [14] V6 <= 60 *
  ## |   |   [15] V6 > 60 *
  ## 
  ## $nodes[[158]]
  ## [1] root
  ## |   [2] V6 <= 70
  ## |   |   [3] V9 <= 16 *
  ## |   |   [4] V9 > 16 *
  ## |   [5] V6 > 70
  ## |   |   [6] V7 <= 60 *
  ## |   |   [7] V7 > 60
  ## |   |   |   [8] V4 <= 1
  ## |   |   |   |   [9] V3 <= 60 *
  ## |   |   |   |   [10] V3 > 60
  ## |   |   |   |   |   [11] V3 <= 68 *
  ## |   |   |   |   |   [12] V3 > 68 *
  ## |   |   |   [13] V4 > 1
  ## |   |   |   |   [14] V5 <= 0 *
  ## |   |   |   |   [15] V5 > 0 *
  ## 
  ## $nodes[[159]]
  ## [1] root
  ## |   [2] V3 <= 45 *
  ## |   [3] V3 > 45
  ## |   |   [4] V4 <= 1
  ## |   |   |   [5] V9 <= 27
  ## |   |   |   |   [6] V6 <= 70 *
  ## |   |   |   |   [7] V6 > 70
  ## |   |   |   |   |   [8] V7 <= 90
  ## |   |   |   |   |   |   [9] V8 <= 1100
  ## |   |   |   |   |   |   |   [10] V2 <= 11 *
  ## |   |   |   |   |   |   |   [11] V2 > 11 *
  ## |   |   |   |   |   |   [12] V8 > 1100 *
  ## |   |   |   |   |   [13] V7 > 90 *
  ## |   |   |   [14] V9 > 27 *
  ## |   |   [15] V4 > 1
  ## |   |   |   [16] V7 <= 80
  ## |   |   |   |   [17] V5 <= 1 *
  ## |   |   |   |   [18] V5 > 1 *
  ## |   |   |   [19] V7 > 80 *
  ## 
  ## $nodes[[160]]
  ## [1] root
  ## |   [2] V4 <= 1
  ## |   |   [3] V3 <= 70
  ## |   |   |   [4] V6 <= 70 *
  ## |   |   |   [5] V6 > 70
  ## |   |   |   |   [6] V9 <= 6 *
  ## |   |   |   |   [7] V9 > 6
  ## |   |   |   |   |   [8] V8 <= 875 *
  ## |   |   |   |   |   [9] V8 > 875 *
  ## |   |   [10] V3 > 70 *
  ## |   [11] V4 > 1
  ## |   |   [12] V9 <= 0 *
  ## |   |   [13] V9 > 0
  ## |   |   |   [14] V8 <= 825 *
  ## |   |   |   [15] V8 > 825 *
  ## 
  ## $nodes[[161]]
  ## [1] root
  ## |   [2] V2 <= 15
  ## |   |   [3] V5 <= 1
  ## |   |   |   [4] V5 <= 0
  ## |   |   |   |   [5] V9 <= 5 *
  ## |   |   |   |   [6] V9 > 5 *
  ## |   |   |   [7] V5 > 0
  ## |   |   |   |   [8] V4 <= 1
  ## |   |   |   |   |   [9] V6 <= 80 *
  ## |   |   |   |   |   [10] V6 > 80 *
  ## |   |   |   |   [11] V4 > 1 *
  ## |   |   [12] V5 > 1 *
  ## |   [13] V2 > 15
  ## |   |   [14] V2 <= 16 *
  ## |   |   [15] V2 > 16 *
  ## 
  ## $nodes[[162]]
  ## [1] root
  ## |   [2] V5 <= 1
  ## |   |   [3] V5 <= 0
  ## |   |   |   [4] V9 <= 6
  ## |   |   |   |   [5] V2 <= 12 *
  ## |   |   |   |   [6] V2 > 12 *
  ## |   |   |   [7] V9 > 6 *
  ## |   |   [8] V5 > 0
  ## |   |   |   [9] V8 <= 925
  ## |   |   |   |   [10] V9 <= 14 *
  ## |   |   |   |   [11] V9 > 14 *
  ## |   |   |   [12] V8 > 925
  ## |   |   |   |   [13] V8 <= 1060 *
  ## |   |   |   |   [14] V8 > 1060 *
  ## |   [15] V5 > 1
  ## |   |   [16] V2 <= 7 *
  ## |   |   [17] V2 > 7 *
  ## 
  ## $nodes[[163]]
  ## [1] root
  ## |   [2] V3 <= 45 *
  ## |   [3] V3 > 45
  ## |   |   [4] V5 <= 0
  ## |   |   |   [5] V3 <= 64 *
  ## |   |   |   [6] V3 > 64 *
  ## |   |   [7] V5 > 0
  ## |   |   |   [8] V9 <= 27
  ## |   |   |   |   [9] V6 <= 70
  ## |   |   |   |   |   [10] V8 <= 1025 *
  ## |   |   |   |   |   [11] V8 > 1025 *
  ## |   |   |   |   [12] V6 > 70
  ## |   |   |   |   |   [13] V4 <= 1
  ## |   |   |   |   |   |   [14] V6 <= 80 *
  ## |   |   |   |   |   |   [15] V6 > 80 *
  ## |   |   |   |   |   [16] V4 > 1 *
  ## |   |   |   [17] V9 > 27 *
  ## 
  ## $nodes[[164]]
  ## [1] root
  ## |   [2] V5 <= 1
  ## |   |   [3] V4 <= 1
  ## |   |   |   [4] V7 <= 70 *
  ## |   |   |   [5] V7 > 70
  ## |   |   |   |   [6] V9 <= 12
  ## |   |   |   |   |   [7] V3 <= 60 *
  ## |   |   |   |   |   [8] V3 > 60 *
  ## |   |   |   |   [9] V9 > 12 *
  ## |   |   [10] V4 > 1
  ## |   |   |   [11] V5 <= 0 *
  ## |   |   |   [12] V5 > 0 *
  ## |   [13] V5 > 1
  ## |   |   [14] V9 <= 10 *
  ## |   |   [15] V9 > 10 *
  ## 
  ## $nodes[[165]]
  ## [1] root
  ## |   [2] V4 <= 1
  ## |   |   [3] V8 <= 1275
  ## |   |   |   [4] V6 <= 70 *
  ## |   |   |   [5] V6 > 70
  ## |   |   |   |   [6] V2 <= 11
  ## |   |   |   |   |   [7] V2 <= 6 *
  ## |   |   |   |   |   [8] V2 > 6 *
  ## |   |   |   |   [9] V2 > 11 *
  ## |   |   [10] V8 > 1275 *
  ## |   [11] V4 > 1
  ## |   |   [12] V5 <= 0 *
  ## |   |   [13] V5 > 0
  ## |   |   |   [14] V2 <= 13 *
  ## |   |   |   [15] V2 > 13 *
  ## 
  ## $nodes[[166]]
  ## [1] root
  ## |   [2] V5 <= 1
  ## |   |   [3] V3 <= 64
  ## |   |   |   [4] V5 <= 0
  ## |   |   |   |   [5] V8 <= 1025 *
  ## |   |   |   |   [6] V8 > 1025 *
  ## |   |   |   [7] V5 > 0
  ## |   |   |   |   [8] V8 <= 875 *
  ## |   |   |   |   [9] V8 > 875 *
  ## |   |   [10] V3 > 64
  ## |   |   |   [11] V6 <= 80 *
  ## |   |   |   [12] V6 > 80 *
  ## |   [13] V5 > 1
  ## |   |   [14] V2 <= 13 *
  ## |   |   [15] V2 > 13 *
  ## 
  ## $nodes[[167]]
  ## [1] root
  ## |   [2] V7 <= 70
  ## |   |   [3] V6 <= 80
  ## |   |   |   [4] V5 <= 1 *
  ## |   |   |   [5] V5 > 1
  ## |   |   |   |   [6] V9 <= 20 *
  ## |   |   |   |   [7] V9 > 20 *
  ## |   |   [8] V6 > 80 *
  ## |   [9] V7 > 70
  ## |   |   [10] V5 <= 0
  ## |   |   |   [11] V2 <= 13 *
  ## |   |   |   [12] V2 > 13 *
  ## |   |   [13] V5 > 0
  ## |   |   |   [14] V3 <= 53 *
  ## |   |   |   [15] V3 > 53
  ## |   |   |   |   [16] V6 <= 80 *
  ## |   |   |   |   [17] V6 > 80 *
  ## 
  ## $nodes[[168]]
  ## [1] root
  ## |   [2] V4 <= 1
  ## |   |   [3] V3 <= 71
  ## |   |   |   [4] V5 <= 1
  ## |   |   |   |   [5] V8 <= 1150
  ## |   |   |   |   |   [6] V3 <= 64 *
  ## |   |   |   |   |   [7] V3 > 64 *
  ## |   |   |   |   [8] V8 > 1150 *
  ## |   |   |   [9] V5 > 1 *
  ## |   |   [10] V3 > 71 *
  ## |   [11] V4 > 1
  ## |   |   [12] V2 <= 10 *
  ## |   |   [13] V2 > 10
  ## |   |   |   [14] V9 <= 3 *
  ## |   |   |   [15] V9 > 3 *
  ## 
  ## $nodes[[169]]
  ## [1] root
  ## |   [2] V3 <= 46 *
  ## |   [3] V3 > 46
  ## |   |   [4] V4 <= 1
  ## |   |   |   [5] V5 <= 1
  ## |   |   |   |   [6] V7 <= 90
  ## |   |   |   |   |   [7] V8 <= 1125
  ## |   |   |   |   |   |   [8] V2 <= 11 *
  ## |   |   |   |   |   |   [9] V2 > 11 *
  ## |   |   |   |   |   [10] V8 > 1125 *
  ## |   |   |   |   [11] V7 > 90 *
  ## |   |   |   [12] V5 > 1 *
  ## |   |   [13] V4 > 1
  ## |   |   |   [14] V5 <= 0 *
  ## |   |   |   [15] V5 > 0
  ## |   |   |   |   [16] V2 <= 16 *
  ## |   |   |   |   [17] V2 > 16 *
  ## 
  ## $nodes[[170]]
  ## [1] root
  ## |   [2] V4 <= 1
  ## |   |   [3] V3 <= 48 *
  ## |   |   [4] V3 > 48
  ## |   |   |   [5] V5 <= 1
  ## |   |   |   |   [6] V7 <= 90
  ## |   |   |   |   |   [7] V7 <= 70 *
  ## |   |   |   |   |   [8] V7 > 70 *
  ## |   |   |   |   [9] V7 > 90 *
  ## |   |   |   [10] V5 > 1 *
  ## |   [11] V4 > 1
  ## |   |   [12] V5 <= 1
  ## |   |   |   [13] V7 <= 80 *
  ## |   |   |   [14] V7 > 80 *
  ## |   |   [15] V5 > 1 *
  ## 
  ## $nodes[[171]]
  ## [1] root
  ## |   [2] V3 <= 66
  ## |   |   [3] V4 <= 1
  ## |   |   |   [4] V7 <= 70 *
  ## |   |   |   [5] V7 > 70
  ## |   |   |   |   [6] V6 <= 80 *
  ## |   |   |   |   [7] V6 > 80 *
  ## |   |   [8] V4 > 1
  ## |   |   |   [9] V2 <= 16
  ## |   |   |   |   [10] V5 <= 0 *
  ## |   |   |   |   [11] V5 > 0 *
  ## |   |   |   [12] V2 > 16 *
  ## |   [13] V3 > 66
  ## |   |   [14] V4 <= 1
  ## |   |   |   [15] V5 <= 1 *
  ## |   |   |   [16] V5 > 1 *
  ## |   |   [17] V4 > 1 *
  ## 
  ## $nodes[[172]]
  ## [1] root
  ## |   [2] V7 <= 70
  ## |   |   [3] V9 <= 20
  ## |   |   |   [4] V4 <= 1 *
  ## |   |   |   [5] V4 > 1 *
  ## |   |   [6] V9 > 20 *
  ## |   [7] V7 > 70
  ## |   |   [8] V3 <= 63
  ## |   |   |   [9] V4 <= 1
  ## |   |   |   |   [10] V6 <= 80 *
  ## |   |   |   |   [11] V6 > 80 *
  ## |   |   |   [12] V4 > 1 *
  ## |   |   [13] V3 > 63
  ## |   |   |   [14] V6 <= 80 *
  ## |   |   |   [15] V6 > 80 *
  ## 
  ## $nodes[[173]]
  ## [1] root
  ## |   [2] V4 <= 1
  ## |   |   [3] V6 <= 80
  ## |   |   |   [4] V5 <= 1 *
  ## |   |   |   [5] V5 > 1 *
  ## |   |   [6] V6 > 80
  ## |   |   |   [7] V9 <= -1 *
  ## |   |   |   [8] V9 > -1
  ## |   |   |   |   [9] V9 <= 4 *
  ## |   |   |   |   [10] V9 > 4 *
  ## |   [11] V4 > 1
  ## |   |   [12] V2 <= 11
  ## |   |   |   [13] V6 <= 80 *
  ## |   |   |   [14] V6 > 80 *
  ## |   |   [15] V2 > 11 *
  ## 
  ## $nodes[[174]]
  ## [1] root
  ## |   [2] V4 <= 1
  ## |   |   [3] V5 <= 1
  ## |   |   |   [4] V9 <= 17
  ## |   |   |   |   [5] V9 <= 8
  ## |   |   |   |   |   [6] V5 <= 0 *
  ## |   |   |   |   |   [7] V5 > 0 *
  ## |   |   |   |   [8] V9 > 8 *
  ## |   |   |   [9] V9 > 17 *
  ## |   |   [10] V5 > 1 *
  ## |   [11] V4 > 1
  ## |   |   [12] V7 <= 60 *
  ## |   |   [13] V7 > 60
  ## |   |   |   [14] V5 <= 0 *
  ## |   |   |   [15] V5 > 0
  ## |   |   |   |   [16] V8 <= 825 *
  ## |   |   |   |   [17] V8 > 825 *
  ## 
  ## $nodes[[175]]
  ## [1] root
  ## |   [2] V4 <= 1
  ## |   |   [3] V6 <= 80
  ## |   |   |   [4] V9 <= 20
  ## |   |   |   |   [5] V5 <= 1 *
  ## |   |   |   |   [6] V5 > 1 *
  ## |   |   |   [7] V9 > 20 *
  ## |   |   [8] V6 > 80
  ## |   |   |   [9] V9 <= 6 *
  ## |   |   |   [10] V9 > 6 *
  ## |   [11] V4 > 1
  ## |   |   [12] V9 <= -1 *
  ## |   |   [13] V9 > -1
  ## |   |   |   [14] V5 <= 0 *
  ## |   |   |   [15] V5 > 0
  ## |   |   |   |   [16] V6 <= 70 *
  ## |   |   |   |   [17] V6 > 70 *
  ## 
  ## $nodes[[176]]
  ## [1] root
  ## |   [2] V5 <= 1
  ## |   |   [3] V3 <= 64
  ## |   |   |   [4] V2 <= 12
  ## |   |   |   |   [5] V3 <= 50 *
  ## |   |   |   |   [6] V3 > 50
  ## |   |   |   |   |   [7] V5 <= 0 *
  ## |   |   |   |   |   [8] V5 > 0 *
  ## |   |   |   [9] V2 > 12 *
  ## |   |   [10] V3 > 64
  ## |   |   |   [11] V9 <= 10
  ## |   |   |   |   [12] V5 <= 0 *
  ## |   |   |   |   [13] V5 > 0 *
  ## |   |   |   [14] V9 > 10 *
  ## |   [15] V5 > 1
  ## |   |   [16] V6 <= 60 *
  ## |   |   [17] V6 > 60 *
  ## 
  ## $nodes[[177]]
  ## [1] root
  ## |   [2] V4 <= 1
  ## |   |   [3] V2 <= 15
  ## |   |   |   [4] V5 <= 1
  ## |   |   |   |   [5] V8 <= 1175
  ## |   |   |   |   |   [6] V6 <= 80 *
  ## |   |   |   |   |   [7] V6 > 80 *
  ## |   |   |   |   [8] V8 > 1175 *
  ## |   |   |   [9] V5 > 1 *
  ## |   |   [10] V2 > 15 *
  ## |   [11] V4 > 1
  ## |   |   [12] V6 <= 70 *
  ## |   |   [13] V6 > 70
  ## |   |   |   [14] V8 <= 975 *
  ## |   |   |   [15] V8 > 975 *
  ## 
  ## $nodes[[178]]
  ## [1] root
  ## |   [2] V5 <= 1
  ## |   |   [3] V4 <= 1
  ## |   |   |   [4] V3 <= 63
  ## |   |   |   |   [5] V5 <= 0 *
  ## |   |   |   |   [6] V5 > 0 *
  ## |   |   |   [7] V3 > 63
  ## |   |   |   |   [8] V9 <= 17
  ## |   |   |   |   |   [9] V6 <= 80 *
  ## |   |   |   |   |   [10] V6 > 80 *
  ## |   |   |   |   [11] V9 > 17 *
  ## |   |   [12] V4 > 1
  ## |   |   |   [13] V5 <= 0 *
  ## |   |   |   [14] V5 > 0 *
  ## |   [15] V5 > 1
  ## |   |   [16] V3 <= 62 *
  ## |   |   [17] V3 > 62 *
  ## 
  ## $nodes[[179]]
  ## [1] root
  ## |   [2] V5 <= 1
  ## |   |   [3] V3 <= 51 *
  ## |   |   [4] V3 > 51
  ## |   |   |   [5] V5 <= 0
  ## |   |   |   |   [6] V9 <= 5 *
  ## |   |   |   |   [7] V9 > 5 *
  ## |   |   |   [8] V5 > 0
  ## |   |   |   |   [9] V6 <= 80
  ## |   |   |   |   |   [10] V9 <= 14 *
  ## |   |   |   |   |   [11] V9 > 14 *
  ## |   |   |   |   [12] V6 > 80
  ## |   |   |   |   |   [13] V8 <= 875 *
  ## |   |   |   |   |   [14] V8 > 875 *
  ## |   [15] V5 > 1
  ## |   |   [16] V8 <= 413 *
  ## |   |   [17] V8 > 413 *
  ## 
  ## $nodes[[180]]
  ## [1] root
  ## |   [2] V7 <= 60 *
  ## |   [3] V7 > 60
  ## |   |   [4] V4 <= 1
  ## |   |   |   [5] V7 <= 90
  ## |   |   |   |   [6] V8 <= 910 *
  ## |   |   |   |   [7] V8 > 910
  ## |   |   |   |   |   [8] V9 <= -1 *
  ## |   |   |   |   |   [9] V9 > -1
  ## |   |   |   |   |   |   [10] V2 <= 11 *
  ## |   |   |   |   |   |   [11] V2 > 11 *
  ## |   |   |   [12] V7 > 90 *
  ## |   |   [13] V4 > 1
  ## |   |   |   [14] V7 <= 80 *
  ## |   |   |   [15] V7 > 80
  ## |   |   |   |   [16] V9 <= 6 *
  ## |   |   |   |   [17] V9 > 6 *
  ## 
  ## $nodes[[181]]
  ## [1] root
  ## |   [2] V4 <= 1
  ## |   |   [3] V7 <= 60 *
  ## |   |   [4] V7 > 60
  ## |   |   |   [5] V6 <= 70 *
  ## |   |   |   [6] V6 > 70
  ## |   |   |   |   [7] V3 <= 63
  ## |   |   |   |   |   [8] V3 <= 58 *
  ## |   |   |   |   |   [9] V3 > 58 *
  ## |   |   |   |   [10] V3 > 63 *
  ## |   [11] V4 > 1
  ## |   |   [12] V7 <= 80
  ## |   |   |   [13] V3 <= 60 *
  ## |   |   |   [14] V3 > 60 *
  ## |   |   [15] V7 > 80 *
  ## 
  ## $nodes[[182]]
  ## [1] root
  ## |   [2] V5 <= 1
  ## |   |   [3] V4 <= 1
  ## |   |   |   [4] V8 <= 925 *
  ## |   |   |   [5] V8 > 925
  ## |   |   |   |   [6] V5 <= 0 *
  ## |   |   |   |   [7] V5 > 0 *
  ## |   |   [8] V4 > 1
  ## |   |   |   [9] V8 <= 925 *
  ## |   |   |   [10] V8 > 925 *
  ## |   [11] V5 > 1
  ## |   |   [12] V9 <= 11 *
  ## |   |   [13] V9 > 11 *
  ## 
  ## $nodes[[183]]
  ## [1] root
  ## |   [2] V5 <= 0
  ## |   |   [3] V8 <= 588 *
  ## |   |   [4] V8 > 588
  ## |   |   |   [5] V7 <= 80 *
  ## |   |   |   [6] V7 > 80 *
  ## |   [7] V5 > 0
  ## |   |   [8] V2 <= 12
  ## |   |   |   [9] V6 <= 70 *
  ## |   |   |   [10] V6 > 70
  ## |   |   |   |   [11] V3 <= 64 *
  ## |   |   |   |   [12] V3 > 64 *
  ## |   |   [13] V2 > 12
  ## |   |   |   [14] V9 <= 15
  ## |   |   |   |   [15] V4 <= 1 *
  ## |   |   |   |   [16] V4 > 1 *
  ## |   |   |   [17] V9 > 15 *
  ## 
  ## $nodes[[184]]
  ## [1] root
  ## |   [2] V3 <= 65
  ## |   |   [3] V6 <= 70 *
  ## |   |   [4] V6 > 70
  ## |   |   |   [5] V8 <= 1060
  ## |   |   |   |   [6] V6 <= 80 *
  ## |   |   |   |   [7] V6 > 80
  ## |   |   |   |   |   [8] V7 <= 80 *
  ## |   |   |   |   |   [9] V7 > 80 *
  ## |   |   |   [10] V8 > 1060 *
  ## |   [11] V3 > 65
  ## |   |   [12] V4 <= 1
  ## |   |   |   [13] V5 <= 1 *
  ## |   |   |   [14] V5 > 1 *
  ## |   |   [15] V4 > 1 *
  ## 
  ## $nodes[[185]]
  ## [1] root
  ## |   [2] V6 <= 70
  ## |   |   [3] V4 <= 1 *
  ## |   |   [4] V4 > 1 *
  ## |   [5] V6 > 70
  ## |   |   [6] V4 <= 1
  ## |   |   |   [7] V9 <= 2 *
  ## |   |   |   [8] V9 > 2
  ## |   |   |   |   [9] V5 <= 0 *
  ## |   |   |   |   [10] V5 > 0
  ## |   |   |   |   |   [11] V7 <= 70 *
  ## |   |   |   |   |   [12] V7 > 70 *
  ## |   |   [13] V4 > 1
  ## |   |   |   [14] V3 <= 59 *
  ## |   |   |   [15] V3 > 59 *
  ## 
  ## $nodes[[186]]
  ## [1] root
  ## |   [2] V5 <= 1
  ## |   |   [3] V8 <= 575 *
  ## |   |   [4] V8 > 575
  ## |   |   |   [5] V8 <= 1025
  ## |   |   |   |   [6] V9 <= 7
  ## |   |   |   |   |   [7] V4 <= 1 *
  ## |   |   |   |   |   [8] V4 > 1 *
  ## |   |   |   |   [9] V9 > 7 *
  ## |   |   |   [10] V8 > 1025
  ## |   |   |   |   [11] V4 <= 1
  ## |   |   |   |   |   [12] V9 <= 2 *
  ## |   |   |   |   |   [13] V9 > 2 *
  ## |   |   |   |   [14] V4 > 1 *
  ## |   [15] V5 > 1
  ## |   |   [16] V2 <= 13 *
  ## |   |   [17] V2 > 13 *
  ## 
  ## $nodes[[187]]
  ## [1] root
  ## |   [2] V4 <= 1
  ## |   |   [3] V3 <= 71
  ## |   |   |   [4] V9 <= 15
  ## |   |   |   |   [5] V9 <= -1 *
  ## |   |   |   |   [6] V9 > -1
  ## |   |   |   |   |   [7] V2 <= 5 *
  ## |   |   |   |   |   [8] V2 > 5
  ## |   |   |   |   |   |   [9] V9 <= 8 *
  ## |   |   |   |   |   |   [10] V9 > 8 *
  ## |   |   |   [11] V9 > 15 *
  ## |   |   [12] V3 > 71 *
  ## |   [13] V4 > 1
  ## |   |   [14] V9 <= 13
  ## |   |   |   [15] V5 <= 0 *
  ## |   |   |   [16] V5 > 0 *
  ## |   |   [17] V9 > 13 *
  ## 
  ## $nodes[[188]]
  ## [1] root
  ## |   [2] V4 <= 1
  ## |   |   [3] V5 <= 0 *
  ## |   |   [4] V5 > 0
  ## |   |   |   [5] V9 <= 24
  ## |   |   |   |   [6] V5 <= 1
  ## |   |   |   |   |   [7] V7 <= 70 *
  ## |   |   |   |   |   [8] V7 > 70 *
  ## |   |   |   |   [9] V5 > 1 *
  ## |   |   |   [10] V9 > 24 *
  ## |   [11] V4 > 1
  ## |   |   [12] V5 <= 0 *
  ## |   |   [13] V5 > 0
  ## |   |   |   [14] V2 <= 12 *
  ## |   |   |   [15] V2 > 12 *
  ## 
  ## $nodes[[189]]
  ## [1] root
  ## |   [2] V4 <= 1
  ## |   |   [3] V7 <= 60 *
  ## |   |   [4] V7 > 60
  ## |   |   |   [5] V5 <= 0 *
  ## |   |   |   [6] V5 > 0
  ## |   |   |   |   [7] V3 <= 70
  ## |   |   |   |   |   [8] V8 <= 993 *
  ## |   |   |   |   |   [9] V8 > 993 *
  ## |   |   |   |   [10] V3 > 70 *
  ## |   [11] V4 > 1
  ## |   |   [12] V7 <= 90
  ## |   |   |   [13] V7 <= 80 *
  ## |   |   |   [14] V7 > 80 *
  ## |   |   [15] V7 > 90 *
  ## 
  ## $nodes[[190]]
  ## [1] root
  ## |   [2] V3 <= 70
  ## |   |   [3] V7 <= 90
  ## |   |   |   [4] V4 <= 1
  ## |   |   |   |   [5] V5 <= 0 *
  ## |   |   |   |   [6] V5 > 0
  ## |   |   |   |   |   [7] V8 <= 1025 *
  ## |   |   |   |   |   [8] V8 > 1025 *
  ## |   |   |   [9] V4 > 1
  ## |   |   |   |   [10] V5 <= 0 *
  ## |   |   |   |   [11] V5 > 0 *
  ## |   |   [12] V7 > 90 *
  ## |   [13] V3 > 70
  ## |   |   [14] V5 <= 1 *
  ## |   |   [15] V5 > 1 *
  ## 
  ## $nodes[[191]]
  ## [1] root
  ## |   [2] V3 <= 71
  ## |   |   [3] V2 <= 21
  ## |   |   |   [4] V6 <= 70 *
  ## |   |   |   [5] V6 > 70
  ## |   |   |   |   [6] V3 <= 64
  ## |   |   |   |   |   [7] V5 <= 0 *
  ## |   |   |   |   |   [8] V5 > 0
  ## |   |   |   |   |   |   [9] V7 <= 80 *
  ## |   |   |   |   |   |   [10] V7 > 80 *
  ## |   |   |   |   [11] V3 > 64 *
  ## |   |   [12] V2 > 21 *
  ## |   [13] V3 > 71 *
  ## 
  ## $nodes[[192]]
  ## [1] root
  ## |   [2] V6 <= 70
  ## |   |   [3] V2 <= 7 *
  ## |   |   [4] V2 > 7 *
  ## |   [5] V6 > 70
  ## |   |   [6] V9 <= 5
  ## |   |   |   [7] V7 <= 90
  ## |   |   |   |   [8] V6 <= 80 *
  ## |   |   |   |   [9] V6 > 80 *
  ## |   |   |   [10] V7 > 90 *
  ## |   |   [11] V9 > 5
  ## |   |   |   [12] V3 <= 64
  ## |   |   |   |   [13] V3 <= 56 *
  ## |   |   |   |   [14] V3 > 56 *
  ## |   |   |   [15] V3 > 64 *
  ## 
  ## $nodes[[193]]
  ## [1] root
  ## |   [2] V5 <= 0
  ## |   |   [3] V9 <= 3 *
  ## |   |   [4] V9 > 3
  ## |   |   |   [5] V2 <= 4 *
  ## |   |   |   [6] V2 > 4 *
  ## |   [7] V5 > 0
  ## |   |   [8] V7 <= 60 *
  ## |   |   [9] V7 > 60
  ## |   |   |   [10] V2 <= 5 *
  ## |   |   |   [11] V2 > 5
  ## |   |   |   |   [12] V9 <= 7 *
  ## |   |   |   |   [13] V9 > 7 *
  ## 
  ## $nodes[[194]]
  ## [1] root
  ## |   [2] V5 <= 1
  ## |   |   [3] V5 <= 0
  ## |   |   |   [4] V7 <= 80 *
  ## |   |   |   [5] V7 > 80 *
  ## |   |   [6] V5 > 0
  ## |   |   |   [7] V4 <= 1
  ## |   |   |   |   [8] V6 <= 80
  ## |   |   |   |   |   [9] V9 <= 15 *
  ## |   |   |   |   |   [10] V9 > 15 *
  ## |   |   |   |   [11] V6 > 80 *
  ## |   |   |   [12] V4 > 1
  ## |   |   |   |   [13] V7 <= 80 *
  ## |   |   |   |   [14] V7 > 80 *
  ## |   [15] V5 > 1
  ## |   |   [16] V2 <= 13 *
  ## |   |   [17] V2 > 13 *
  ## 
  ## $nodes[[195]]
  ## [1] root
  ## |   [2] V4 <= 1
  ## |   |   [3] V9 <= 27
  ## |   |   |   [4] V5 <= 1
  ## |   |   |   |   [5] V2 <= 11
  ## |   |   |   |   |   [6] V7 <= 70 *
  ## |   |   |   |   |   [7] V7 > 70 *
  ## |   |   |   |   [8] V2 > 11 *
  ## |   |   |   [9] V5 > 1 *
  ## |   |   [10] V9 > 27 *
  ## |   [11] V4 > 1
  ## |   |   [12] V2 <= 12
  ## |   |   |   [13] V6 <= 80 *
  ## |   |   |   [14] V6 > 80 *
  ## |   |   [15] V2 > 12 *
  ## 
  ## $nodes[[196]]
  ## [1] root
  ## |   [2] V4 <= 1
  ## |   |   [3] V6 <= 70 *
  ## |   |   [4] V6 > 70
  ## |   |   |   [5] V5 <= 0 *
  ## |   |   |   [6] V5 > 0
  ## |   |   |   |   [7] V3 <= 59 *
  ## |   |   |   |   [8] V3 > 59
  ## |   |   |   |   |   [9] V9 <= 8 *
  ## |   |   |   |   |   [10] V9 > 8 *
  ## |   [11] V4 > 1
  ## |   |   [12] V7 <= 80
  ## |   |   |   [13] V9 <= 0 *
  ## |   |   |   [14] V9 > 0 *
  ## |   |   [15] V7 > 80 *
  ## 
  ## $nodes[[197]]
  ## [1] root
  ## |   [2] V7 <= 60
  ## |   |   [3] V5 <= 1 *
  ## |   |   [4] V5 > 1 *
  ## |   [5] V7 > 60
  ## |   |   [6] V4 <= 1
  ## |   |   |   [7] V8 <= 488 *
  ## |   |   |   [8] V8 > 488
  ## |   |   |   |   [9] V2 <= 15
  ## |   |   |   |   |   [10] V5 <= 0 *
  ## |   |   |   |   |   [11] V5 > 0 *
  ## |   |   |   |   [12] V2 > 15 *
  ## |   |   [13] V4 > 1
  ## |   |   |   [14] V5 <= 0 *
  ## |   |   |   [15] V5 > 0
  ## |   |   |   |   [16] V3 <= 65 *
  ## |   |   |   |   [17] V3 > 65 *
  ## 
  ## $nodes[[198]]
  ## [1] root
  ## |   [2] V5 <= 1
  ## |   |   [3] V4 <= 1
  ## |   |   |   [4] V6 <= 80
  ## |   |   |   |   [5] V9 <= 14 *
  ## |   |   |   |   [6] V9 > 14 *
  ## |   |   |   [7] V6 > 80
  ## |   |   |   |   [8] V9 <= 6 *
  ## |   |   |   |   [9] V9 > 6 *
  ## |   |   [10] V4 > 1
  ## |   |   |   [11] V6 <= 80 *
  ## |   |   |   [12] V6 > 80 *
  ## |   [13] V5 > 1
  ## |   |   [14] V9 <= 10 *
  ## |   |   [15] V9 > 10 *
  ## 
  ## $nodes[[199]]
  ## [1] root
  ## |   [2] V4 <= 1
  ## |   |   [3] V5 <= 1
  ## |   |   |   [4] V3 <= 65
  ## |   |   |   |   [5] V9 <= 1 *
  ## |   |   |   |   [6] V9 > 1
  ## |   |   |   |   |   [7] V3 <= 56 *
  ## |   |   |   |   |   [8] V3 > 56 *
  ## |   |   |   [9] V3 > 65 *
  ## |   |   [10] V5 > 1 *
  ## |   [11] V4 > 1
  ## |   |   [12] V7 <= 90
  ## |   |   |   [13] V5 <= 0 *
  ## |   |   |   [14] V5 > 0
  ## |   |   |   |   [15] V9 <= 0 *
  ## |   |   |   |   [16] V9 > 0 *
  ## |   |   [17] V7 > 90 *
  ## 
  ## $nodes[[200]]
  ## [1] root
  ## |   [2] V7 <= 70
  ## |   |   [3] V6 <= 70
  ## |   |   |   [4] V9 <= 11 *
  ## |   |   |   [5] V9 > 11 *
  ## |   |   [6] V6 > 70 *
  ## |   [7] V7 > 70
  ## |   |   [8] V4 <= 1
  ## |   |   |   [9] V2 <= 6 *
  ## |   |   |   [10] V2 > 6 *
  ## |   |   [11] V4 > 1
  ## |   |   |   [12] V3 <= 57 *
  ## |   |   |   [13] V3 > 57 *
  ## 
  ## 
  ## $data
  ##     Surv(time, status) inst age sex ph.ecog ph.karno pat.karno meal.cal
  ## 9                  218    1  53   1       1       70        80      825
  ## 10                 166    7  61   1       2       70        70      271
  ## 11                 170    6  57   1       1       80        80     1025
  ## 15                 567   12  57   1       1       80        70     2600
  ## 17                 613   22  70   1       1       90       100     1150
  ## 18                 707   16  63   1       2       50        70     1025
  ## 19                  61    1  56   2       2       60        60      238
  ## 21                 301   11  67   1       1       80        80     1025
  ## 22                  81    6  49   2       0      100        70     1175
  ## 24                 371   15  58   1       0       90       100      975
  ## 26                 520   12  70   2       1       90        80      825
  ## 27                 574    4  60   1       0      100       100     1025
  ## 28                 118   13  70   1       3       60        70     1075
  ## 29                 390   13  53   1       1       80        70      875
  ## 30                  12    1  74   1       2       70        50      305
  ## 31                 473   12  69   2       1       90        90     1025
  ## 32                  26    1  73   1       2       60        70      388
  ## 34                 107   16  60   2       2       50        60      925
  ## 35                  53   12  61   1       2       70       100     1075
  ## 37                 814   22  65   1       2       70        60      513
  ## 38                965+   15  66   2       1       70        90      875
  ## 39                  93    1  74   1       2       50        40     1225
  ## 40                 731    1  64   2       1       80       100     1175
  ## 41                 460    5  70   1       1       80        60      975
  ## 42                 153   11  73   2       2       60        70     1075
  ## 43                 433   10  59   2       0       90        90      363
  ## 45                 583    7  68   1       1       60        70     1025
  ## 46                  95    7  76   2       2       60        60      625
  ## 47                 303    1  74   1       0       90        70      463
  ## 48                 519    3  63   1       1       80        70     1025
  ## 49                 643   13  74   1       0       90        90     1425
  ## 50                 765   22  50   2       1       90       100     1175
  ## 53                  53   21  68   1       0       90       100     1025
  ## 54                 246    1  58   1       0      100        90     1175
  ## 55                 689    6  59   1       1       90        80     1300
  ## 57                   5    5  65   2       0      100        80      338
  ## 59                 687    3  58   2       1       80        80     1225
  ## 60                 345    1  64   2       1       90        80     1075
  ## 61                 444   22  75   2       2       70        70      438
  ## 62                 223   12  48   1       1       90        80     1300
  ## 64                  60   11  65   2       1       90        80     1025
  ## 65                 163    3  69   1       1       80        60     1125
  ## 66                  65    3  68   1       2       70        50      825
  ## 68                821+    5  64   2       0       90        70     1025
  ## 69                 428   22  68   1       0      100        80     1039
  ## 70                 230    6  67   1       1       80       100      488
  ## 71                840+   13  63   1       0       90        90     1175
  ## 72                 305    3  48   2       1       80        90      538
  ## 73                  11    5  74   1       2       70       100     1175
  ## 75                 226   21  53   2       1       90        80      825
  ## 76                 426   12  71   2       1       90        90     1075
  ## 77                 705    1  51   2       0      100        80     1300
  ## 78                 363    6  56   2       1       80        70     1225
  ## 80                 176    1  73   1       0       90        70      169
  ## 81                 791    4  59   1       0      100        80      768
  ## 82                  95   13  55   1       1       70        90     1500
  ## 83                196+   11  42   1       1       80        80     1425
  ## 84                 167   21  44   2       1       80        90      588
  ## 85                806+   16  44   1       1       80        80     1025
  ## 86                 284    6  71   1       1       80        90     1100
  ## 87                 641   22  62   2       1       80        80     1150
  ## 88                 147   21  61   1       0      100        90     1175
  ## 89                740+   13  44   2       1       90        80      588
  ## 90                 163    1  72   1       2       70        70      910
  ## 91                 655   11  63   1       0      100        90      975
  ## 93                  88    5  66   1       1       90        80      875
  ## 94                 245   10  57   2       1       80        60      280
  ## 96                  30   12  72   1       2       80        60      288
  ## 99                 477   11  64   1       1       90       100      910
  ## 101               559+    1  58   2       0      100       100      710
  ## 102                450    6  69   2       1       80        90     1175
  ## 106                156   12  66   1       1       80        90      875
  ## 107               529+   26  54   2       1       80       100      975
  ## 109                429   21  55   1       1      100        80      975
  ## 110                351    3  75   2       2       60        50      925
  ## 111                 15   13  69   1       0       90        70      575
  ## 112                181    1  44   1       1       80        90     1175
  ## 113                283   10  80   1       1       80       100     1030
  ## 116                 13    1  76   1       2       70        70      413
  ## 117                212    3  49   1       2       70        60      675
  ## 118                524    1  68   1       2       60        70     1300
  ## 119                288   16  66   1       2       70        60      613
  ## 120                363   15  80   1       1       80        90      346
  ## 122                199   26  60   2       2       70        80      675
  ## 123                550    3  69   2       1       70        80      910
  ## 124                 54   11  72   1       2       60        60      768
  ## 125                558    1  70   1       0       90        90     1025
  ## 126                207   22  66   1       1       80        80      925
  ## 127                 92    7  50   1       1       80        60     1075
  ## 128                 60   12  64   1       1       80        90      993
  ## 129               551+   16  77   2       2       80        60      750
  ## 131                293    4  59   2       1       80        80      925
  ## 133                353    6  47   1       0      100        90     1225
  ## 135                267    1  67   1       0       90        70      313
  ## 136               511+   22  74   2       2       60        40       96
  ## 139                457    1  54   1       1       90        90      975
  ## 140                337    5  56   1       0      100       100     1500
  ## 141                201   21  73   2       2       70        60     1225
  ## 142               404+    3  74   1       1       80        70      413
  ## 143                222   26  76   1       2       70        70     1500
  ## 144                 62    1  65   2       1       80        90     1075
  ## 145               458+   11  57   1       1       80       100      513
  ## 147                353   16  71   1       0      100        80      775
  ## 148                163   16  54   1       1       90        80     1225
  ## 149                 31   12  82   1       0      100        90      413
  ## 151                229   13  70   1       1       70        60     1175
  ## 155                156   32  55   1       2       70        30     1025
  ## 158                291    4  62   1       2       70        60      475
  ## 159                179   12  63   1       1       80        70      538
  ## 160               376+    1  56   2       1       80        90      825
  ## 161               384+   32  62   2       0       90        90      588
  ## 162                268   10  44   2       1       90       100     2450
  ## 163               292+   11  69   1       2       60        70     2450
  ## 164                142    6  63   1       1       90        80      875
  ## 165               413+    7  64   1       1       80        70      413
  ## 166               266+   16  57   2       0       90        90     1075
  ## 168                320   21  46   1       0      100       100      860
  ## 169                181    6  61   1       1       90        90      730
  ## 170                285   12  65   1       0      100        90     1025
  ## 171               301+   13  61   1       1       90       100      825
  ## 172                348    2  58   2       0       90        80     1225
  ## 173                197    2  56   1       1       90        60      768
  ## 174               382+   16  43   2       0      100        90      338
  ## 175               303+    1  53   1       1       90        80     1225
  ## 176               296+   13  59   2       1       80       100     1025
  ## 177                180    1  56   1       2       60        80     1225
  ## 179                145    1  53   2       1       80        90      588
  ## 180               269+    7  74   2       0      100       100      588
  ## 181               300+   13  60   1       0      100       100      975
  ## 182               284+    1  39   1       0      100        90     1225
  ## 185               292+   12  51   2       0       90        80     1225
  ## 186               332+   12  45   2       0       90       100      975
  ## 187                285    2  72   2       2       70        90      463
  ## 188               259+    3  58   1       0       90        80     1300
  ## 189                110   15  64   1       1       80        60     1025
  ## 190                286   22  53   1       0       90        90     1225
  ## 191                270   16  72   1       1       80        90      488
  ## 194               225+    1  64   1       1       90        80      825
  ## 195                269   22  71   1       1       90        90     1300
  ## 196               225+   12  70   1       0      100       100     1175
  ## 197               243+   32  63   2       1       80        90      825
  ## 199               276+    1  52   2       0      100        80      975
  ## 200                135   32  60   1       1       90        70     1275
  ## 201                 79   15  64   2       1       90        90      488
  ## 202                 59   22  73   1       1       60        60     2200
  ## 203               240+   32  63   2       0       90       100     1025
  ## 204               202+    3  50   2       0      100       100      635
  ## 205               235+   26  63   2       0      100        90      413
  ## 208                239   13  50   2       2       60        60     1025
  ## 211               252+    1  60   2       0      100        90      488
  ## 212               221+    6  67   1       1       80        70      413
  ## 213               185+   15  69   1       1       90        70     1075
  ## 216               222+   11  65   1       1       90        70     1025
  ## 218                183   21  76   1       2       80        60      825
  ## 219               211+   11  70   2       2       70        30      131
  ## 220               175+    2  57   2       0       80        80      725
  ## 221               197+   22  67   1       1       80        90     1500
  ## 222               203+   11  71   2       1       80        90     1025
  ## 225               191+   13  39   1       0       90        90     2350
  ## 226               105+   32  75   2       2       60        70     1025
  ## 227               174+    6  66   1       1       90       100     1075
  ## 228               177+   22  58   2       1       80        90     1060
  ##     wt.loss
  ## 9        16
  ## 10       34
  ## 11       27
  ## 15       60
  ## 17       -5
  ## 18       22
  ## 19       10
  ## 21       17
  ## 22       -8
  ## 24       13
  ## 26        6
  ## 27      -13
  ## 28       20
  ## 29       -7
  ## 30       20
  ## 31       -1
  ## 32       20
  ## 34      -15
  ## 35       10
  ## 37       28
  ## 38        4
  ## 39       24
  ## 40       15
  ## 41       10
  ## 42       11
  ## 43       27
  ## 45        7
  ## 46      -24
  ## 47       30
  ## 48       10
  ## 49        2
  ## 50        4
  ## 53        0
  ## 54        7
  ## 55       15
  ## 57        5
  ## 59       10
  ## 60       -3
  ## 61        8
  ## 62       68
  ## 64        0
  ## 65        0
  ## 66        8
  ## 68        3
  ## 69        0
  ## 70       23
  ## 71       -1
  ## 72       29
  ## 73        0
  ## 75        3
  ## 76       19
  ## 77        0
  ## 78       -2
  ## 80       30
  ## 81        5
  ## 82       15
  ## 83        8
  ## 84       -1
  ## 85        1
  ## 86       14
  ## 87        1
  ## 88        4
  ## 89       39
  ## 90        2
  ## 91       -1
  ## 93        8
  ## 94       14
  ## 96        7
  ## 99        0
  ## 101      15
  ## 102       3
  ## 106      14
  ## 107      -3
  ## 109       5
  ## 110      11
  ## 111      10
  ## 112       5
  ## 113       6
  ## 116      20
  ## 117      20
  ## 118      30
  ## 119      24
  ## 120      11
  ## 122      10
  ## 123       0
  ## 124      -3
  ## 125      17
  ## 126      20
  ## 127      13
  ## 128       0
  ## 129      28
  ## 131      52
  ## 133       5
  ## 135       6
  ## 136      37
  ## 139      -5
  ## 140      15
  ## 141     -16
  ## 142      38
  ## 143       8
  ## 144       0
  ## 145      30
  ## 147       2
  ## 148      13
  ## 149      27
  ## 151      -2
  ## 155      10
  ## 158      27
  ## 159      -2
  ## 160      17
  ## 161       8
  ## 162       2
  ## 163      36
  ## 164       2
  ## 165      16
  ## 166       3
  ## 168       4
  ## 169       0
  ## 170       0
  ## 171       2
  ## 172      10
  ## 173      37
  ## 174       6
  ## 175      12
  ## 176       0
  ## 177      -2
  ## 179      13
  ## 180       0
  ## 181       5
  ## 182      -5
  ## 185       0
  ## 186       5
  ## 187      20
  ## 188       8
  ## 189      12
  ## 190       8
  ## 191      14
  ## 194      33
  ## 195      -2
  ## 196       6
  ## 197       0
  ## 199       0
  ## 200       0
  ## 201      37
  ## 202       5
  ## 203       0
  ## 204       1
  ## 205       0
  ## 208      -3
  ## 211      -2
  ## 212      23
  ## 213       0
  ## 216      18
  ## 218       7
  ## 219       3
  ## 220      11
  ## 221       2
  ## 222       0
  ## 225      -5
  ## 226       5
  ## 227       1
  ## 228       0
  ## 
  ## $weights
  ## $weights[[1]]
  ##   [1] 1 1 0 0 0 1 1 0 0 1 0 0 1 1 1 0 1 1 0 1 1 1 1 1 1 1 0 1 1 0 1 1 1 1
  ##  [35] 0 0 1 0 1 1 0 1 1 1 1 0 0 1 0 0 1 0 1 0 0 0 0 1 1 1 0 0 0 1 1 0 0 1
  ##  [69] 1 1 0 0 1 1 1 0 0 1 1 0 1 1 1 1 1 0 1 0 1 1 1 1 0 1 0 0 0 1 1 1 1 1
  ## [103] 1 1 1 1 0 1 0 1 1 0 1 0 1 0 1 0 1 1 1 1 1 1 1 1 1 0 1 0 1 1 1 1 1 0
  ## [137] 0 1 1 0 1 1 1 1 0 0 1 1 0 0 0 1 0 1 1 1 0 1 1 1 0 0
  ## 
  ## $weights[[2]]
  ##   [1] 1 1 0 0 1 0 0 0 1 1 0 1 0 1 1 1 1 0 1 1 0 0 0 1 0 0 1 1 1 1 1 1 0 1
  ##  [35] 1 1 1 1 1 1 1 0 1 1 0 1 0 1 1 1 1 0 1 0 0 1 1 0 0 1 1 0 0 1 1 1 1 0
  ##  [69] 0 1 1 1 1 1 1 0 1 1 1 0 1 0 1 1 0 1 0 0 0 1 1 1 1 0 1 0 1 1 1 1 1 0
  ## [103] 1 1 1 0 1 1 1 1 1 0 1 0 1 1 0 1 1 0 1 1 0 1 0 1 0 0 1 1 0 0 1 0 1 0
  ## [137] 0 0 1 1 0 1 1 1 1 1 1 0 1 1 0 1 1 0 0 0 0 1 1 0 1 0
  ## 
  ## $weights[[3]]
  ##   [1] 1 1 1 0 0 0 0 0 1 0 1 1 1 1 1 0 1 0 0 1 0 0 1 1 1 1 0 1 1 0 1 0 1 1
  ##  [35] 1 0 1 1 1 1 0 1 1 1 1 0 0 0 1 1 0 1 1 0 1 1 1 0 0 1 0 1 0 0 0 0 0 1
  ##  [69] 1 1 1 1 1 1 1 0 1 1 0 1 1 1 1 0 0 1 0 0 0 1 1 1 1 0 0 1 1 1 1 0 1 1
  ## [103] 1 0 1 1 1 1 0 0 1 0 0 0 0 1 1 0 0 1 0 1 1 1 1 0 1 0 1 1 1 1 1 1 0 1
  ## [137] 0 1 1 0 0 1 1 1 0 1 0 1 1 1 1 1 1 1 0 0 0 1 1 1 1 1
  ## 
  ## $weights[[4]]
  ##   [1] 1 1 1 1 1 1 0 1 0 0 1 0 1 0 1 0 1 1 0 1 1 0 1 0 1 0 0 0 1 1 0 1 0 1
  ##  [35] 1 0 0 1 0 1 1 1 0 1 1 1 1 1 1 0 1 1 0 0 1 1 0 1 1 1 1 1 0 1 1 1 0 1
  ##  [69] 1 0 1 1 1 1 0 0 1 1 1 0 0 1 0 1 0 1 0 1 1 1 1 0 1 0 1 0 1 1 1 1 1 0
  ## [103] 1 1 0 1 0 1 1 0 0 0 0 1 1 1 1 0 1 0 1 0 0 1 1 0 1 1 1 1 0 1 1 1 1 0
  ## [137] 1 1 0 0 0 0 0 1 1 0 1 1 1 1 0 1 1 1 1 0 0 1 0 0 1 1
  ## 
  ## $weights[[5]]
  ##   [1] 0 1 1 1 1 1 1 0 1 1 1 0 1 0 1 0 0 1 0 0 1 1 0 0 1 1 1 0 0 1 1 1 0 0
  ##  [35] 1 1 0 1 1 1 0 0 1 1 1 1 1 1 1 0 1 1 0 1 1 1 1 1 1 1 0 0 0 1 1 0 0 0
  ##  [69] 0 1 0 1 1 0 1 0 1 1 0 1 1 1 1 1 1 1 1 1 0 1 0 1 0 0 0 0 0 1 1 1 1 0
  ## [103] 0 1 1 1 0 1 1 1 0 1 1 1 1 1 1 0 1 1 0 0 0 1 1 0 1 1 1 1 1 0 0 1 0 1
  ## [137] 1 1 1 1 1 1 0 0 1 1 0 1 0 1 0 1 1 0 0 1 0 0 1 0 1 0
  ## 
  ## $weights[[6]]
  ##   [1] 1 1 1 0 0 0 1 1 1 0 0 1 1 1 0 0 1 0 1 1 0 0 0 0 1 1 1 1 0 1 1 0 1 1
  ##  [35] 1 1 0 0 1 1 1 1 0 1 0 0 1 1 1 1 0 1 0 1 1 1 0 0 0 1 1 1 1 1 1 1 1 1
  ##  [69] 1 0 1 1 1 0 0 0 0 1 1 1 1 1 0 1 1 1 1 0 1 0 1 1 1 1 1 0 1 1 0 1 1 0
  ## [103] 0 0 0 1 1 1 0 0 1 1 0 0 1 1 1 1 1 0 1 1 1 1 0 1 0 0 0 1 0 1 1 1 1 1
  ## [137] 1 0 1 1 0 1 1 1 0 0 1 0 1 0 0 0 1 0 1 1 0 1 1 1 0 0
  ## 
  ## $weights[[7]]
  ##   [1] 0 0 1 1 1 1 1 1 0 1 1 1 1 1 0 1 0 0 1 0 1 1 1 1 0 0 1 0 1 0 1 0 1 0
  ##  [35] 0 0 1 0 1 1 1 1 1 0 0 1 1 1 0 1 0 0 0 1 1 0 0 1 1 1 1 1 0 0 1 1 1 0
  ##  [69] 1 1 1 0 0 1 0 0 1 1 1 1 0 1 1 1 1 0 1 1 1 1 0 0 1 0 1 0 1 1 1 1 1 1
  ## [103] 1 1 1 0 1 0 1 0 0 0 0 0 1 0 1 1 1 1 1 1 0 0 0 1 0 1 1 0 1 1 0 1 1 1
  ## [137] 1 1 0 1 1 0 1 1 0 0 1 1 0 0 1 1 0 1 1 0 1 0 1 1 1 1
  ## 
  ## $weights[[8]]
  ##   [1] 0 1 1 1 1 0 1 1 0 1 0 1 1 0 0 1 0 1 0 0 1 1 1 0 1 0 1 1 1 0 0 1 0 1
  ##  [35] 1 0 0 1 0 0 1 0 0 1 0 0 1 1 0 0 1 1 1 0 1 1 1 1 1 0 0 1 0 0 0 1 0 0
  ##  [69] 1 1 1 1 1 1 1 1 0 1 0 1 0 0 1 1 1 0 1 1 1 1 1 1 0 1 0 1 1 1 1 1 0 1
  ## [103] 0 0 1 1 1 1 1 1 0 0 0 0 1 1 1 1 1 0 1 0 1 1 0 1 0 1 1 1 1 0 1 1 1 0
  ## [137] 1 0 1 1 1 1 1 1 1 0 1 0 0 1 1 0 1 1 1 0 0 0 1 1 1 1
  ## 
  ## $weights[[9]]
  ##   [1] 1 1 1 1 1 1 0 1 1 1 1 1 1 1 0 1 1 0 1 1 1 1 1 1 1 1 0 1 0 1 0 1 1 0
  ##  [35] 1 1 1 0 1 0 1 1 0 0 1 1 1 1 0 1 0 0 0 0 1 1 1 1 0 0 0 1 1 1 1 1 0 1
  ##  [69] 0 1 1 0 1 1 1 1 1 1 0 1 0 0 1 0 0 0 0 0 1 1 1 0 1 1 1 1 1 0 1 1 0 0
  ## [103] 1 1 0 0 1 1 0 0 1 0 1 1 1 1 0 0 1 1 0 1 1 0 1 0 0 1 1 0 0 1 1 0 0 1
  ## [137] 1 1 1 0 1 0 0 1 1 1 1 1 1 0 1 1 1 0 0 1 0 0 0 1 0 0
  ## 
  ## $weights[[10]]
  ##   [1] 1 0 0 1 0 0 1 1 1 1 1 0 1 1 0 1 1 1 0 1 0 0 1 0 0 1 1 0 1 1 0 1 1 0
  ##  [35] 1 0 1 1 1 1 1 0 1 1 1 1 1 1 1 0 0 0 0 1 1 1 0 1 0 1 1 1 1 1 1 1 0 1
  ##  [69] 0 0 1 0 0 1 1 1 0 1 0 1 1 1 1 1 1 0 1 0 1 1 1 0 0 0 1 1 1 1 0 0 1 0
  ## [103] 0 1 1 0 1 1 1 0 0 1 1 0 1 0 0 1 1 0 1 0 1 0 1 1 0 1 1 1 1 0 0 1 1 0
  ## [137] 1 0 1 1 1 1 1 1 0 1 0 1 1 1 1 1 1 1 0 1 0 0 0 0 0 1
  ## 
  ## $weights[[11]]
  ##   [1] 0 1 0 1 1 0 1 0 1 1 1 0 1 0 1 1 0 0 1 0 1 1 1 1 0 0 1 0 1 0 0 1 1 0
  ##  [35] 0 1 1 0 1 0 0 1 1 1 0 1 1 1 1 0 1 0 1 1 1 1 0 0 0 1 0 1 0 1 0 1 1 1
  ##  [69] 1 0 1 0 1 1 1 1 0 0 1 1 1 1 1 0 1 1 1 0 0 1 1 0 1 0 1 1 1 0 1 0 0 0
  ## [103] 0 1 1 0 0 0 1 0 0 1 1 1 1 1 1 1 0 0 1 0 1 0 1 1 0 1 1 0 1 1 1 1 0 1
  ## [137] 1 1 1 0 1 1 1 0 1 1 0 1 0 1 1 1 1 1 1 0 1 1 1 1 1 0
  ## 
  ## $weights[[12]]
  ##   [1] 1 1 1 0 1 1 1 0 1 1 1 1 0 0 0 1 1 1 0 1 0 1 0 1 1 1 1 0 1 0 1 1 1 0
  ##  [35] 0 0 1 1 1 0 1 1 0 0 0 1 1 0 1 1 1 0 1 0 0 0 1 1 0 1 0 0 0 1 0 1 1 0
  ##  [69] 1 1 1 1 0 0 1 0 0 0 1 0 1 0 1 1 1 1 0 0 1 0 0 0 0 1 1 1 1 1 1 1 1 1
  ## [103] 1 1 1 0 0 1 1 0 0 1 1 1 1 0 0 1 1 1 1 1 0 0 1 1 1 1 0 0 1 1 1 0 0 1
  ## [137] 0 1 1 1 1 1 0 1 0 1 1 1 1 1 0 0 1 1 1 1 1 0 1 1 0 1
  ## 
  ## $weights[[13]]
  ##   [1] 0 1 0 0 1 1 1 1 1 1 1 0 1 0 1 1 0 0 0 1 1 1 0 1 1 0 1 0 0 1 0 0 1 1
  ##  [35] 0 1 1 1 1 1 1 1 1 1 1 1 1 0 1 1 0 0 0 1 1 0 0 0 1 1 0 1 0 1 0 1 1 1
  ##  [69] 0 1 0 0 0 0 1 0 0 0 1 1 0 1 1 0 1 0 1 0 1 1 1 1 0 0 1 1 1 0 1 0 0 1
  ## [103] 0 1 0 0 1 1 1 0 1 0 0 1 0 1 1 1 1 1 1 1 1 1 1 0 1 1 0 0 1 1 0 1 1 1
  ## [137] 1 1 1 1 1 0 1 0 1 0 1 1 1 1 0 1 1 1 0 0 1 1 1 0 1 1
  ## 
  ## $weights[[14]]
  ##   [1] 0 1 1 1 1 1 0 1 1 0 1 0 0 1 1 0 0 1 1 0 1 0 0 1 1 1 0 0 1 1 0 0 0 1
  ##  [35] 1 0 0 1 0 0 1 0 0 1 1 1 1 0 0 1 1 1 1 0 0 0 1 1 1 1 1 1 1 1 0 1 1 1
  ##  [69] 1 1 0 1 1 1 0 0 1 1 1 1 0 1 1 1 1 1 1 1 0 1 0 1 0 1 1 0 1 1 1 0 1 0
  ## [103] 1 1 1 1 1 0 1 1 1 1 0 1 1 0 1 1 1 1 0 1 1 0 0 1 1 0 0 1 1 0 1 0 0 1
  ## [137] 1 1 0 0 0 1 1 1 1 1 0 1 1 1 0 0 1 0 1 1 0 0 0 0 1 0
  ## 
  ## $weights[[15]]
  ##   [1] 0 1 0 1 0 0 1 1 1 1 1 1 0 1 1 1 1 1 0 1 1 1 1 0 1 1 0 1 1 1 1 1 0 1
  ##  [35] 1 0 0 1 0 0 1 1 0 1 0 1 0 0 0 0 1 1 1 1 1 1 1 1 0 0 1 1 1 1 0 1 0 1
  ##  [69] 1 0 1 1 0 0 0 1 1 1 0 1 1 1 1 0 0 1 1 0 1 1 0 1 1 0 1 1 1 0 1 0 0 1
  ## [103] 1 1 1 0 0 1 1 0 1 1 0 0 0 0 0 0 0 1 0 1 0 1 1 1 0 1 0 1 1 0 1 0 0 1
  ## [137] 0 1 1 0 0 1 1 1 1 1 1 1 1 1 1 0 0 1 0 1 1 1 1 1 0 1
  ## 
  ## $weights[[16]]
  ##   [1] 1 1 1 1 1 0 1 1 1 0 1 1 0 1 1 1 0 1 1 0 1 1 0 1 1 0 0 1 1 1 1 1 0 0
  ##  [35] 0 0 0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 0 1 1 1 1 0 1 1 0 0 0 1 0 1
  ##  [69] 1 0 1 0 1 0 1 1 1 0 1 0 0 1 0 1 1 0 1 1 1 1 1 0 0 0 1 0 0 1 1 1 1 1
  ## [103] 0 0 1 1 0 1 0 1 1 0 0 1 0 0 1 1 0 1 0 0 0 0 1 0 1 1 1 1 1 0 0 0 1 0
  ## [137] 1 1 1 1 0 0 1 0 1 1 1 1 1 0 0 1 1 1 0 1 0 0 0 1 1 0
  ## 
  ## $weights[[17]]
  ##   [1] 1 1 1 0 1 0 1 0 1 1 0 1 0 1 1 1 1 0 0 0 1 0 0 1 0 1 1 1 1 1 0 1 0 1
  ##  [35] 0 1 1 0 1 0 1 1 0 0 0 0 1 1 1 1 1 0 1 1 1 1 0 0 1 0 1 0 1 1 1 0 1 1
  ##  [69] 1 1 0 0 1 1 1 0 0 1 1 1 0 1 1 1 0 1 1 1 1 0 1 1 1 0 1 1 0 1 1 1 0 1
  ## [103] 0 1 1 1 1 1 1 1 0 1 1 1 0 0 0 0 1 0 0 1 0 0 0 1 0 1 1 1 0 0 0 1 1 0
  ## [137] 1 1 0 1 1 0 0 0 1 1 1 1 1 1 1 0 0 1 0 1 1 1 1 1 1 0
  ## 
  ## $weights[[18]]
  ##   [1] 1 1 1 1 1 1 1 1 0 1 1 1 1 1 0 0 1 1 0 0 1 0 0 1 1 0 1 0 0 0 1 1 1 1
  ##  [35] 1 0 1 1 1 1 1 0 0 0 1 0 1 0 1 1 1 1 1 0 0 0 0 1 1 1 1 1 0 0 0 1 1 0
  ##  [69] 0 0 0 1 0 0 1 1 0 1 1 1 0 1 1 0 1 1 1 1 1 0 1 0 1 0 1 0 1 1 0 1 1 0
  ## [103] 1 1 1 1 1 0 0 1 0 0 1 1 1 1 1 1 1 0 1 1 0 1 0 0 1 1 1 0 0 1 1 1 1 0
  ## [137] 1 0 0 1 0 1 1 0 1 1 1 1 0 1 0 1 0 1 1 0 1 1 1 0 1 0
  ## 
  ## $weights[[19]]
  ##   [1] 1 0 0 1 0 0 0 0 0 1 0 1 1 1 0 1 1 0 1 1 0 1 0 1 0 1 1 1 0 1 1 0 1 0
  ##  [35] 1 1 1 1 0 0 0 1 0 1 1 1 1 1 1 0 1 1 0 0 1 0 1 0 0 1 1 1 1 0 0 1 1 1
  ##  [69] 0 1 1 1 1 0 1 1 1 1 0 1 1 1 1 0 1 0 1 0 1 1 0 1 1 1 0 1 0 1 1 1 0 1
  ## [103] 1 0 1 0 1 1 0 0 0 1 1 1 1 1 0 1 1 1 1 0 0 0 0 0 1 1 1 1 1 1 0 1 1 1
  ## [137] 1 1 1 1 1 0 1 1 1 0 0 1 1 0 1 0 1 1 1 0 0 0 1 1 0 0
  ## 
  ## $weights[[20]]
  ##   [1] 1 1 0 1 1 0 0 0 0 1 0 0 0 1 0 1 1 1 1 0 1 0 1 0 0 0 0 1 1 0 1 1 0 0
  ##  [35] 0 0 0 0 1 1 1 0 1 0 0 0 0 0 0 0 1 1 1 1 0 1 1 0 1 1 0 1 0 1 0 1 0 0
  ##  [69] 1 0 1 1 1 1 0 1 1 1 1 1 1 1 1 0 0 1 1 1 1 0 1 1 1 1 0 1 1 1 1 1 1 1
  ## [103] 1 0 1 1 1 0 1 1 0 0 1 1 1 1 1 1 1 1 0 0 0 1 1 1 1 1 1 1 1 1 0 1 1 1
  ## [137] 0 0 0 1 1 1 1 1 1 1 0 1 1 1 0 0 1 1 1 1 0 1 1 0 1 0
  ## 
  ## $weights[[21]]
  ##   [1] 0 1 1 1 0 1 0 1 1 1 0 1 0 1 0 0 1 0 1 1 1 1 1 0 1 1 1 1 1 1 0 1 0 1
  ##  [35] 0 1 1 0 1 0 1 1 0 0 1 1 0 0 0 1 1 1 1 1 1 0 1 1 1 0 1 1 0 1 1 0 0 0
  ##  [69] 0 1 0 1 1 0 1 1 1 0 0 0 1 1 1 1 0 1 1 0 1 0 1 1 1 1 0 0 1 0 0 0 1 1
  ## [103] 0 1 0 1 0 0 1 0 1 1 1 1 1 1 0 1 0 1 1 1 1 1 1 1 1 1 1 1 1 1 0 1 0 1
  ## [137] 1 0 1 0 0 0 1 0 0 0 1 1 0 1 0 1 1 1 1 0 1 0 1 1 0 1
  ## 
  ## $weights[[22]]
  ##   [1] 1 0 1 0 1 0 1 1 0 1 0 1 0 1 1 1 1 1 1 1 0 0 1 1 1 1 1 1 1 1 1 1 0 0
  ##  [35] 1 1 0 0 0 1 1 1 1 1 1 0 0 0 1 1 1 1 1 1 1 1 1 1 1 0 0 0 1 1 0 1 0 0
  ##  [69] 1 1 0 1 1 1 1 1 1 1 1 1 0 1 1 0 1 1 0 1 1 1 0 1 1 0 1 1 0 1 0 1 0 1
  ## [103] 1 1 1 1 0 0 1 1 1 1 1 0 1 0 1 0 0 0 1 1 1 1 0 0 1 0 1 0 0 1 1 0 1 1
  ## [137] 0 0 1 0 0 1 0 0 1 0 1 0 0 0 1 0 0 0 1 0 0 1 1 1 1 0
  ## 
  ## $weights[[23]]
  ##   [1] 1 0 0 1 0 1 1 1 0 1 0 1 0 1 0 0 0 1 1 1 1 0 1 1 1 1 1 1 1 0 1 1 1 0
  ##  [35] 1 0 0 1 0 1 1 1 1 1 1 1 0 0 0 0 1 1 0 1 0 0 0 0 1 1 1 0 1 0 0 1 0 1
  ##  [69] 0 1 0 1 0 0 1 1 1 1 1 1 1 0 0 0 1 0 1 1 1 1 1 1 1 0 1 1 1 1 1 0 1 1
  ## [103] 1 0 0 1 1 1 1 0 1 1 1 1 1 0 0 1 0 1 0 1 0 1 1 0 1 0 0 1 0 1 0 1 1 1
  ## [137] 1 0 1 0 0 1 1 1 1 1 1 1 1 1 0 0 0 1 0 0 1 1 1 1 0 1
  ## 
  ## $weights[[24]]
  ##   [1] 0 0 1 1 1 1 0 1 1 0 1 0 1 1 0 0 1 1 0 1 1 1 1 0 1 1 1 1 0 0 1 1 1 1
  ##  [35] 1 1 1 0 0 1 1 1 1 1 1 1 0 1 0 1 1 1 1 1 1 0 0 1 1 1 1 1 1 0 0 1 1 1
  ##  [69] 0 0 0 1 1 1 1 0 1 0 0 0 1 1 1 0 1 1 1 1 1 0 1 1 0 1 1 0 1 0 0 1 1 1
  ## [103] 0 0 0 1 1 0 1 1 0 0 1 1 1 1 1 1 0 0 0 1 1 0 1 0 0 1 0 0 1 0 0 0 1 0
  ## [137] 0 0 0 1 1 1 1 0 1 0 1 0 1 1 1 0 1 0 1 1 1 0 1 0 1 1
  ## 
  ## $weights[[25]]
  ##   [1] 1 1 0 1 0 1 0 0 0 1 1 1 1 1 0 0 1 1 1 0 1 1 1 1 0 0 0 0 1 1 1 1 1 1
  ##  [35] 0 0 1 0 1 0 1 0 1 0 0 1 1 1 1 1 1 0 1 1 1 0 0 1 1 1 1 0 1 1 0 0 0 0
  ##  [69] 1 1 1 0 0 0 1 1 1 0 1 1 1 0 1 0 1 1 0 0 1 1 1 1 1 0 1 1 1 0 1 0 1 1
  ## [103] 0 1 0 0 0 1 1 1 0 1 1 1 1 1 0 0 1 1 0 1 0 0 1 1 1 0 1 1 0 1 0 1 1 1
  ## [137] 0 1 1 1 1 0 1 0 1 0 0 1 1 0 1 1 1 0 1 0 1 1 0 1 1 1
  ## 
  ## $weights[[26]]
  ##   [1] 1 1 1 1 1 1 1 1 0 1 0 1 0 1 0 0 1 1 0 1 1 1 1 0 0 1 0 1 1 1 0 0 1 0
  ##  [35] 1 1 0 1 1 1 0 0 1 1 1 1 1 0 0 0 0 1 1 0 0 1 1 1 1 0 1 0 0 1 0 1 1 1
  ##  [69] 1 1 0 1 1 1 1 0 1 1 1 1 1 0 1 0 0 1 1 0 1 1 0 1 0 1 0 1 1 0 1 1 1 1
  ## [103] 1 1 1 1 0 1 1 1 1 0 1 1 0 0 1 0 1 0 1 1 0 1 0 0 0 0 1 0 0 1 0 1 1 1
  ## [137] 0 1 0 1 1 1 1 0 0 1 0 1 0 1 1 1 0 0 1 0 1 0 1 1 0 1
  ## 
  ## $weights[[27]]
  ##   [1] 1 0 0 0 0 1 1 0 1 0 1 1 0 1 1 0 0 0 1 0 0 1 1 1 1 1 1 1 1 1 1 1 1 0
  ##  [35] 0 0 1 1 1 1 0 0 0 1 1 1 1 1 1 0 0 0 1 1 0 0 0 1 0 0 1 0 1 1 1 1 0 1
  ##  [69] 1 1 1 0 0 1 1 1 1 0 1 1 0 1 1 1 0 1 0 1 0 1 1 0 0 0 1 0 1 1 0 1 1 1
  ## [103] 1 1 0 1 1 1 1 1 1 0 1 1 0 1 0 1 1 1 1 0 0 0 1 0 1 1 1 0 0 0 1 1 1 0
  ## [137] 0 1 1 0 1 1 0 0 0 1 1 1 1 1 1 1 1 1 1 0 1 0 1 1 1 0
  ## 
  ## $weights[[28]]
  ##   [1] 1 1 0 1 1 0 1 1 1 1 0 0 1 1 0 0 1 1 0 0 1 0 1 1 1 1 1 0 1 1 1 1 0 1
  ##  [35] 0 1 1 1 1 1 0 1 1 0 1 0 0 1 1 1 0 1 1 0 0 1 0 0 0 0 1 0 0 1 1 1 0 0
  ##  [69] 1 1 1 1 1 0 1 0 1 1 1 1 0 1 1 1 1 1 0 0 1 0 1 1 0 1 0 1 0 0 1 1 1 1
  ## [103] 1 1 1 1 0 1 1 0 0 1 0 0 1 1 1 1 0 1 1 0 1 0 1 1 0 1 0 1 0 1 1 1 0 1
  ## [137] 1 0 1 1 0 1 0 0 0 1 1 0 0 1 1 1 0 1 0 1 1 0 1 1 0 1
  ## 
  ## $weights[[29]]
  ##   [1] 1 1 0 1 1 0 1 1 1 1 0 0 1 1 1 0 0 1 0 0 0 0 1 0 0 1 0 1 0 1 1 1 0 1
  ##  [35] 1 1 1 0 1 0 1 1 1 0 1 0 1 1 1 1 0 0 1 1 0 1 0 1 1 0 0 1 0 0 0 1 1 1
  ##  [69] 0 0 1 1 1 1 0 1 1 1 0 0 0 1 1 1 1 0 1 0 1 0 1 1 1 0 1 1 1 1 0 0 1 1
  ## [103] 0 1 1 0 1 1 1 1 0 0 1 1 0 1 1 0 1 1 0 1 1 1 1 1 0 0 1 0 1 1 1 0 1 0
  ## [137] 1 1 1 1 0 1 0 1 1 1 1 0 1 0 0 1 0 0 1 1 1 1 0 1 1 1
  ## 
  ## $weights[[30]]
  ##   [1] 0 0 1 0 0 0 1 0 0 1 1 1 1 1 0 1 1 1 1 1 1 1 1 1 1 1 1 0 1 1 0 0 0 1
  ##  [35] 1 1 1 1 0 0 1 0 0 1 1 1 0 0 0 1 1 1 1 0 1 0 0 1 0 1 1 1 1 0 1 0 1 1
  ##  [69] 1 1 1 1 1 0 1 0 0 1 0 1 0 0 1 1 1 1 1 0 0 1 0 1 1 1 0 0 1 1 1 0 0 0
  ## [103] 0 1 0 0 0 0 0 1 1 1 0 0 1 1 1 0 1 1 1 1 1 1 0 1 1 1 1 0 1 1 1 0 1 0
  ## [137] 1 0 1 0 1 1 0 1 1 0 1 1 1 1 0 1 1 0 1 1 0 1 1 0 1 1
  ## 
  ## $weights[[31]]
  ##   [1] 1 0 0 1 0 1 1 1 1 0 1 1 0 1 0 1 1 1 1 1 1 1 1 1 0 1 0 1 0 1 0 1 0 0
  ##  [35] 1 1 0 1 1 0 0 1 0 0 0 1 1 1 0 0 0 1 0 1 0 1 0 1 0 1 1 0 0 0 1 1 1 1
  ##  [69] 0 1 1 1 1 1 1 1 0 1 1 0 0 1 0 1 1 1 0 1 0 1 1 1 1 1 1 1 0 1 0 0 0 1
  ## [103] 0 1 0 1 0 1 1 1 1 1 1 1 1 1 1 0 0 1 0 0 1 0 1 1 0 1 0 0 0 0 1 1 1 1
  ## [137] 1 1 1 1 1 1 1 0 0 1 1 1 0 0 1 1 1 0 1 1 1 1 0 0 0 1
  ## 
  ## $weights[[32]]
  ##   [1] 0 1 1 1 1 1 1 1 1 1 1 1 0 1 0 0 1 0 0 0 1 1 0 1 1 0 1 1 1 1 0 0 1 1
  ##  [35] 1 0 0 1 1 0 1 0 1 0 0 1 0 0 0 1 1 1 1 1 1 0 1 1 1 0 0 1 0 1 0 1 0 1
  ##  [69] 1 1 1 0 0 1 1 1 0 0 1 1 0 0 1 1 1 0 0 1 1 1 0 1 0 1 1 0 1 1 1 1 0 0
  ## [103] 1 1 0 1 1 1 1 1 1 0 1 1 0 1 1 0 1 0 1 1 0 1 0 0 0 1 1 0 0 1 1 1 1 1
  ## [137] 1 0 1 0 1 0 1 1 1 0 1 1 0 1 0 1 1 0 0 1 0 1 1 1 0 1
  ## 
  ## $weights[[33]]
  ##   [1] 1 0 0 0 0 0 0 0 0 1 1 0 1 0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 0 1 0 1 0
  ##  [35] 1 0 1 0 1 1 1 0 0 1 1 1 0 0 1 0 1 1 1 0 1 1 0 1 1 1 0 1 0 1 1 1 1 0
  ##  [69] 1 1 1 1 1 1 0 1 0 1 1 0 0 1 1 1 1 1 1 1 0 0 1 1 0 1 1 1 0 1 1 0 0 0
  ## [103] 0 1 1 0 1 0 0 1 1 0 1 1 0 1 1 1 0 0 1 0 0 1 1 1 1 0 0 0 1 0 1 1 0 1
  ## [137] 1 1 0 0 1 1 1 1 1 1 1 1 0 1 1 0 1 0 0 0 1 1 0 0 1 1
  ## 
  ## $weights[[34]]
  ##   [1] 1 0 1 1 1 1 1 1 1 0 1 1 0 1 1 1 0 1 1 0 1 0 0 1 1 0 0 0 1 1 0 1 1 1
  ##  [35] 1 1 1 0 0 1 1 1 0 0 1 1 1 1 0 1 0 0 1 1 0 0 1 1 0 1 0 0 1 1 1 1 0 1
  ##  [69] 1 1 1 1 1 1 0 0 1 0 1 0 1 1 0 0 0 1 1 1 0 0 0 1 1 1 1 1 1 1 1 0 0 0
  ## [103] 1 1 1 1 1 1 1 0 1 1 1 0 0 1 1 1 0 1 1 0 0 1 0 1 1 0 1 1 1 0 0 0 0 0
  ## [137] 1 0 1 0 0 1 0 0 0 1 1 1 1 0 1 0 1 1 1 0 1 1 1 0 1 1
  ## 
  ## $weights[[35]]
  ##   [1] 1 0 0 1 1 0 1 1 1 1 1 0 1 0 1 0 0 1 0 0 1 1 0 1 0 1 1 1 1 1 1 0 0 0
  ##  [35] 1 1 0 1 0 1 1 0 1 1 0 1 1 1 0 1 1 0 1 1 0 0 1 0 1 0 1 1 1 1 0 0 0 1
  ##  [69] 1 0 1 1 1 1 1 1 1 1 1 0 1 1 1 1 1 1 0 0 1 1 0 0 1 1 0 1 1 0 1 1 1 1
  ## [103] 1 1 1 0 1 0 0 0 0 0 1 0 1 0 1 0 1 0 0 1 1 1 0 0 1 1 1 1 0 1 0 0 1 0
  ## [137] 1 1 1 0 1 1 1 1 1 0 1 1 1 1 0 0 1 1 0 0 1 1 0 0 1 1
  ## 
  ## $weights[[36]]
  ##   [1] 1 1 0 1 1 1 1 0 1 1 0 1 1 1 1 0 1 1 1 1 1 0 1 1 1 0 1 1 1 0 0 0 0 1
  ##  [35] 1 0 1 1 0 1 1 1 0 1 1 1 1 0 0 1 1 1 0 0 1 0 1 1 1 0 1 1 1 0 1 0 1 0
  ##  [69] 1 0 1 1 0 1 0 0 0 1 0 0 1 1 1 1 1 1 1 1 0 1 1 0 0 0 1 0 1 1 1 0 0 1
  ## [103] 1 1 1 0 0 0 0 0 1 0 0 0 1 1 0 1 1 1 1 1 0 0 0 1 1 1 1 0 1 1 1 0 1 1
  ## [137] 1 1 0 1 1 1 0 0 1 0 1 1 0 1 1 0 0 1 1 1 0 1 1 1 0 0
  ## 
  ## $weights[[37]]
  ##   [1] 1 0 1 0 0 0 1 1 0 1 0 0 0 0 1 0 1 1 1 1 0 1 0 1 1 0 0 1 0 1 1 1 1 0
  ##  [35] 1 1 0 1 0 1 1 0 1 0 1 0 1 0 1 1 1 0 0 1 1 0 0 0 0 1 0 1 1 0 0 0 0 1
  ##  [69] 0 1 1 1 1 1 0 1 0 1 1 1 1 0 1 1 0 1 0 0 0 1 1 1 1 1 0 0 0 1 1 0 1 1
  ## [103] 1 1 1 1 1 1 1 0 0 0 1 1 1 0 1 1 1 0 1 1 1 1 1 0 1 1 0 1 1 1 1 1 1 1
  ## [137] 1 1 1 1 0 1 0 1 0 1 0 1 1 0 1 1 1 0 1 1 1 1 0 0 1 1
  ## 
  ## $weights[[38]]
  ##   [1] 0 1 1 0 1 1 1 0 1 1 1 1 1 0 1 0 1 1 1 0 1 1 1 0 0 0 1 0 1 1 1 1 1 1
  ##  [35] 1 1 1 1 0 1 1 1 1 1 1 1 1 0 0 1 0 1 0 0 1 1 0 1 0 0 1 1 0 0 1 0 1 1
  ##  [69] 1 0 0 1 1 0 0 1 1 0 1 1 1 0 1 1 0 0 1 0 1 1 1 1 0 1 1 1 1 1 0 1 0 1
  ## [103] 0 0 1 1 0 1 1 0 1 1 1 1 1 0 1 1 0 1 1 1 1 0 0 0 1 1 0 0 1 0 1 1 0 1
  ## [137] 1 0 1 0 0 0 1 1 0 1 1 0 1 0 1 0 1 0 0 0 1 1 1 0 1 0
  ## 
  ## $weights[[39]]
  ##   [1] 1 1 1 0 1 1 1 1 0 1 1 1 1 0 1 1 1 1 1 1 1 0 1 1 1 1 0 1 1 0 0 1 1 1
  ##  [35] 1 1 1 1 1 0 0 0 0 0 0 1 0 0 1 0 0 1 1 0 1 1 0 0 1 0 0 0 1 0 1 1 1 1
  ##  [69] 0 1 1 1 0 1 1 1 1 1 1 0 1 0 1 1 1 0 0 1 0 0 1 1 0 1 1 1 0 1 1 1 1 1
  ## [103] 0 0 0 1 1 1 1 0 0 1 1 0 0 1 1 0 0 1 0 1 1 0 0 1 1 0 0 1 1 0 1 1 1 0
  ## [137] 1 1 0 0 0 0 1 1 1 1 1 1 1 1 0 0 1 1 0 0 1 1 1 1 0 0
  ## 
  ## $weights[[40]]
  ##   [1] 1 0 0 0 0 1 0 1 1 1 1 1 1 1 1 1 1 1 0 1 1 1 1 1 1 1 1 1 1 0 0 0 1 1
  ##  [35] 0 1 1 0 1 1 1 0 1 1 1 0 1 1 1 0 1 0 0 1 1 0 1 0 0 1 0 0 1 1 1 0 0 0
  ##  [69] 0 0 1 1 1 0 1 0 1 0 1 1 0 0 1 1 0 0 0 1 1 0 0 0 1 1 0 1 0 1 1 0 1 0
  ## [103] 1 1 1 0 1 0 1 1 1 1 0 0 1 1 0 1 1 1 0 1 0 1 0 1 1 1 1 0 1 1 1 1 0 1
  ## [137] 0 1 0 0 0 1 0 1 1 1 1 1 1 1 1 0 1 1 1 1 1 1 0 0 1 0
  ## 
  ## $weights[[41]]
  ##   [1] 0 1 0 0 0 0 0 1 1 0 1 0 1 0 0 1 1 1 0 1 1 0 1 1 1 1 0 1 1 0 0 1 1 0
  ##  [35] 1 0 1 0 1 1 1 1 1 1 1 0 1 1 0 0 0 0 1 0 1 1 0 1 0 1 1 0 1 1 1 1 0 1
  ##  [69] 0 1 0 0 0 1 1 0 1 1 1 1 1 0 1 1 0 1 1 1 1 0 1 1 0 0 1 0 1 1 0 1 1 1
  ## [103] 0 1 1 0 1 0 0 0 1 1 0 1 1 0 1 0 1 1 1 1 1 0 1 1 1 1 1 1 0 0 1 1 0 1
  ## [137] 1 1 1 0 1 0 0 0 1 1 1 1 1 0 1 1 0 1 1 1 1 1 1 0 0 1
  ## 
  ## $weights[[42]]
  ##   [1] 0 1 1 1 0 1 1 0 1 0 1 1 1 1 1 1 1 1 0 0 1 1 1 1 0 1 1 1 0 0 1 1 1 0
  ##  [35] 0 1 1 0 0 1 0 0 0 1 1 1 1 1 1 1 0 1 0 1 0 1 1 1 1 1 1 0 0 1 0 1 1 0
  ##  [69] 1 0 1 1 1 1 1 1 1 1 1 0 0 1 1 0 0 1 0 0 0 1 0 1 1 1 0 0 0 0 0 1 1 1
  ## [103] 1 1 1 0 1 0 0 1 1 1 1 1 1 0 1 1 1 0 1 0 0 1 0 1 1 1 0 0 1 0 1 0 0 0
  ## [137] 1 1 1 1 1 1 0 0 1 1 0 0 0 0 1 1 1 1 1 1 0 0 0 1 1 1
  ## 
  ## $weights[[43]]
  ##   [1] 1 1 1 0 1 1 1 1 1 1 0 1 0 1 1 1 0 1 1 1 1 0 1 1 1 0 0 1 0 0 0 0 0 1
  ##  [35] 0 1 0 1 0 0 1 1 1 0 0 1 1 1 0 1 0 1 0 0 0 1 1 1 0 0 0 0 1 0 1 1 1 1
  ##  [69] 1 1 0 1 1 1 1 1 1 0 1 1 1 1 1 1 1 0 1 1 1 0 1 1 1 0 0 1 1 1 1 0 0 1
  ## [103] 0 1 1 1 0 0 1 1 0 1 1 1 0 1 0 1 0 1 1 1 1 0 0 1 1 1 1 1 1 1 0 1 1 0
  ## [137] 0 0 0 1 1 1 1 1 0 0 0 1 0 0 1 1 0 1 0 1 1 0 0 1 0 1
  ## 
  ## $weights[[44]]
  ##   [1] 1 1 0 1 1 1 1 1 0 0 1 1 0 0 1 0 1 1 0 1 1 0 1 1 1 0 1 0 0 0 0 1 0 1
  ##  [35] 0 0 1 0 1 1 0 1 0 1 1 1 1 0 0 0 1 0 1 1 0 0 0 1 1 1 0 1 0 1 0 1 1 0
  ##  [69] 1 1 1 1 1 0 0 0 1 0 1 0 0 1 1 1 1 1 1 0 1 1 0 0 1 0 1 0 1 1 1 0 1 1
  ## [103] 1 1 0 1 0 1 1 1 1 1 1 0 1 1 1 0 0 0 0 1 1 1 1 1 0 0 1 1 1 1 1 1 1 1
  ## [137] 0 1 1 0 1 0 0 0 1 1 1 1 0 1 1 1 1 1 1 0 1 0 0 1 1 1
  ## 
  ## $weights[[45]]
  ##   [1] 1 1 0 1 0 1 0 1 1 0 1 0 0 1 1 1 1 1 1 0 1 1 0 0 1 0 0 1 1 1 0 0 0 1
  ##  [35] 0 0 1 1 1 0 1 1 1 1 1 1 0 1 1 0 0 0 1 1 1 1 1 0 1 1 1 0 1 0 1 0 1 0
  ##  [69] 1 1 1 0 1 1 1 1 1 1 1 1 0 1 1 0 1 0 0 1 0 0 1 0 1 0 1 1 0 1 1 0 1 1
  ## [103] 1 1 1 1 1 0 1 1 1 0 1 0 1 1 0 0 0 1 1 1 1 0 0 1 1 0 1 0 1 0 0 1 0 1
  ## [137] 1 0 0 1 1 0 1 1 1 1 0 1 1 1 1 0 0 0 1 1 1 0 1 1 0 0
  ## 
  ## $weights[[46]]
  ##   [1] 1 1 0 0 0 1 1 1 0 1 1 1 1 0 1 0 1 0 0 1 0 1 0 1 1 0 1 0 0 0 1 1 0 1
  ##  [35] 1 1 1 1 1 0 0 1 0 1 0 0 1 1 1 0 1 1 1 0 1 1 1 1 0 1 1 1 1 1 0 1 1 1
  ##  [69] 1 0 0 0 1 1 1 0 0 1 0 0 0 1 1 1 1 1 0 1 1 1 0 0 0 1 0 0 0 1 0 0 0 1
  ## [103] 1 1 0 1 0 0 0 1 0 1 1 1 1 1 1 1 0 1 1 1 0 1 1 1 1 1 1 1 1 1 1 1 1 0
  ## [137] 0 0 1 0 1 0 1 1 1 1 1 1 0 0 1 1 0 1 1 0 1 1 0 0 1 1
  ## 
  ## $weights[[47]]
  ##   [1] 0 0 0 0 1 0 1 0 1 1 1 1 1 0 1 1 1 1 0 1 0 0 0 0 1 1 0 1 1 1 1 1 1 1
  ##  [35] 1 1 0 0 0 0 1 0 0 1 0 1 1 1 1 1 1 0 1 1 1 1 1 1 1 0 1 1 1 0 0 0 1 1
  ##  [69] 1 1 1 1 1 0 0 1 0 1 0 1 0 1 1 0 0 1 1 0 0 0 1 1 1 1 1 0 1 1 0 1 1 1
  ## [103] 1 1 0 1 1 1 0 1 0 1 0 1 1 0 0 1 1 1 0 0 1 1 1 1 0 0 1 0 0 0 0 0 1 0
  ## [137] 1 1 1 0 1 0 0 1 0 1 1 1 0 1 1 0 1 0 1 1 1 1 1 1 1 1
  ## 
  ## $weights[[48]]
  ##   [1] 0 1 0 1 1 0 1 1 0 0 1 1 1 1 1 1 1 1 0 0 0 0 0 0 1 1 1 1 1 1 1 1 1 1
  ##  [35] 1 1 1 1 1 0 0 1 0 1 1 1 0 1 0 0 1 0 1 1 1 1 1 0 1 0 0 1 0 1 1 0 0 1
  ##  [69] 1 1 1 1 0 0 1 1 1 0 0 0 0 1 1 1 1 1 0 1 1 1 1 1 1 1 0 1 0 0 0 0 1 1
  ## [103] 0 0 1 1 1 1 1 1 1 1 1 1 1 1 1 0 0 0 1 1 0 1 1 0 0 0 1 0 1 1 1 1 0 1
  ## [137] 0 1 1 0 1 1 0 0 1 1 0 1 1 0 0 1 1 0 0 1 0 0 1 0 1 0
  ## 
  ## $weights[[49]]
  ##   [1] 1 1 1 1 0 1 1 1 1 1 0 0 1 0 0 1 0 0 1 1 1 1 0 0 0 0 0 1 0 1 0 1 1 1
  ##  [35] 0 1 1 0 1 1 1 1 0 1 1 1 1 1 0 1 0 1 1 1 0 1 1 0 1 1 1 0 0 0 1 0 0 1
  ##  [69] 0 1 1 1 1 0 0 1 0 0 0 1 1 0 0 0 1 1 1 0 0 0 1 0 1 1 1 1 0 0 0 0 1 1
  ## [103] 1 0 1 0 1 1 1 1 1 1 1 0 1 1 1 1 1 0 1 1 1 1 0 0 1 1 1 1 1 1 1 0 1 1
  ## [137] 0 1 0 0 1 0 1 0 0 0 0 0 1 1 1 1 1 1 1 1 1 1 1 0 1 1
  ## 
  ## $weights[[50]]
  ##   [1] 1 0 1 1 0 0 1 1 1 1 0 1 1 1 1 0 1 1 0 0 0 1 0 0 1 0 0 0 0 1 1 1 0 0
  ##  [35] 1 1 1 0 1 0 1 0 1 0 1 1 1 0 1 1 0 1 0 1 1 0 1 0 1 1 1 1 1 1 0 1 0 0
  ##  [69] 1 1 1 1 1 1 0 1 0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 0 0 1 1 1 1 0 1 1 0 1
  ## [103] 0 1 1 1 1 1 1 0 0 1 0 1 0 1 1 1 0 1 0 1 0 1 1 0 0 0 1 1 0 0 1 0 1 0
  ## [137] 1 1 0 1 1 0 1 1 0 0 1 0 1 1 0 1 1 0 0 1 0 1 0 0 1 1
  ## 
  ## $weights[[51]]
  ##   [1] 1 1 1 1 1 1 1 0 1 0 1 1 1 1 1 0 1 0 0 0 1 0 1 1 1 1 1 0 1 0 1 0 1 1
  ##  [35] 1 1 1 0 1 0 1 1 1 0 0 1 1 0 1 0 0 1 0 1 0 1 0 0 0 1 1 0 1 1 0 1 1 1
  ##  [69] 1 1 1 1 0 0 1 1 1 0 1 1 1 1 0 1 1 0 0 1 1 1 1 0 1 1 1 0 0 0 0 0 1 1
  ## [103] 0 0 1 1 1 1 1 0 0 0 1 1 0 1 1 0 0 1 1 0 0 1 1 1 0 1 0 1 0 1 1 1 0 1
  ## [137] 1 0 1 1 0 0 1 1 0 1 1 1 1 1 1 0 1 0 1 1 1 0 0 0 1 0
  ## 
  ## $weights[[52]]
  ##   [1] 1 0 1 0 1 1 1 1 0 1 0 1 1 0 1 1 1 1 0 0 1 0 0 1 0 1 1 1 1 0 0 1 0 1
  ##  [35] 0 0 1 1 0 0 0 1 1 1 0 1 0 1 1 1 1 1 1 1 1 1 0 1 0 0 1 1 1 1 1 0 1 1
  ##  [69] 1 1 1 0 1 0 0 1 0 0 0 1 1 1 0 1 1 1 0 1 1 0 0 1 0 1 1 0 0 0 1 1 1 1
  ## [103] 0 0 0 0 0 0 0 1 1 1 1 1 1 1 1 1 1 1 0 1 0 0 1 0 0 1 0 1 0 0 1 1 1 1
  ## [137] 0 1 0 0 1 1 1 1 1 1 1 1 1 1 1 0 1 1 1 0 1 1 1 0 0 1
  ## 
  ## $weights[[53]]
  ##   [1] 1 1 1 1 1 1 0 0 1 1 0 1 0 1 1 1 1 1 0 1 1 1 1 1 0 1 1 1 1 0 0 0 0 1
  ##  [35] 0 1 0 1 0 1 0 0 1 1 1 1 1 0 1 1 0 1 1 1 1 1 1 0 1 0 1 1 1 0 0 0 1 1
  ##  [69] 0 1 1 1 1 1 1 1 1 0 0 0 1 0 1 1 0 0 0 0 0 1 0 0 0 1 1 0 0 0 0 1 0 1
  ## [103] 0 1 1 1 1 0 1 1 1 0 0 0 1 0 0 1 1 1 1 0 0 1 1 1 1 0 1 0 0 1 1 0 1 0
  ## [137] 1 0 1 1 1 1 1 0 1 0 1 1 1 1 1 0 1 1 1 1 0 1 1 1 1 0
  ## 
  ## $weights[[54]]
  ##   [1] 0 1 1 1 0 0 0 1 1 1 0 1 0 1 1 1 1 1 1 1 1 0 1 1 1 1 1 1 1 1 1 1 1 0
  ##  [35] 1 0 1 0 1 1 1 1 1 0 1 1 0 1 0 1 0 1 0 0 1 1 0 0 1 1 1 0 1 1 1 1 0 1
  ##  [69] 1 0 1 0 0 0 0 1 0 1 1 0 1 0 1 1 0 1 1 0 1 1 1 1 0 0 0 0 0 1 0 1 0 1
  ## [103] 1 1 1 1 0 1 1 1 0 1 1 0 1 0 0 0 1 1 0 1 1 1 1 1 1 1 1 1 0 1 0 1 1 1
  ## [137] 1 0 1 1 0 0 1 0 1 0 0 0 1 0 0 0 0 1 1 1 0 1 1 0 1 0
  ## 
  ## $weights[[55]]
  ##   [1] 1 1 1 0 1 0 1 1 1 0 0 1 1 1 1 0 0 1 0 0 1 0 1 1 1 1 1 1 0 1 1 1 1 1
  ##  [35] 0 0 0 0 0 0 1 1 1 1 0 1 1 1 0 0 0 1 1 1 1 1 1 0 0 0 1 1 0 1 0 1 0 1
  ##  [69] 1 1 1 0 0 1 1 0 1 1 1 1 1 1 1 0 1 1 1 0 1 0 1 1 1 1 1 0 0 1 1 0 0 1
  ## [103] 0 1 0 0 0 0 1 1 1 1 0 0 0 1 1 1 1 0 0 1 0 1 0 0 1 1 1 1 0 1 1 0 0 0
  ## [137] 1 1 0 1 1 0 0 1 0 1 1 1 0 0 1 1 0 1 1 1 1 1 1 1 1 1
  ## 
  ## $weights[[56]]
  ##   [1] 1 1 0 0 1 1 0 1 0 0 0 1 1 1 1 1 1 0 1 1 0 1 0 0 0 0 1 1 1 1 1 0 0 0
  ##  [35] 0 0 1 1 1 0 1 1 0 0 0 0 1 0 1 1 0 1 0 1 0 0 0 1 0 1 1 1 0 1 1 1 0 0
  ##  [69] 1 1 1 1 1 0 1 1 1 1 1 0 1 1 1 1 0 0 1 1 1 0 1 0 1 1 0 1 1 1 0 1 1 1
  ## [103] 1 1 0 0 1 1 1 0 1 1 1 1 0 1 0 0 1 1 1 1 1 0 1 1 0 0 0 0 1 1 1 1 1 0
  ## [137] 1 1 1 1 1 0 0 1 1 1 0 1 1 1 1 1 1 0 0 1 1 1 1 0 0 0
  ## 
  ## $weights[[57]]
  ##   [1] 0 1 1 0 1 0 1 0 1 1 0 0 1 0 0 1 0 1 1 1 1 1 1 1 0 0 1 1 1 0 0 0 1 0
  ##  [35] 0 1 0 0 1 0 1 0 0 1 0 1 1 1 0 1 0 0 0 0 1 1 0 0 1 1 1 1 1 0 1 1 1 1
  ##  [69] 1 1 1 1 1 0 1 1 1 0 0 0 1 1 0 1 1 1 1 0 1 0 0 1 0 1 1 1 1 0 1 1 0 1
  ## [103] 0 0 0 1 0 0 1 0 1 0 1 1 1 0 1 1 0 1 1 1 0 1 1 1 1 1 1 1 0 0 1 0 0 1
  ## [137] 1 1 1 1 1 0 1 1 0 1 1 1 0 1 1 1 0 0 1 1 1 1 1 1 1 1
  ## 
  ## $weights[[58]]
  ##   [1] 1 1 1 0 1 1 1 0 1 0 1 1 1 0 0 1 0 1 0 1 1 1 0 1 1 1 1 1 1 1 1 1 1 0
  ##  [35] 1 1 0 0 1 1 1 0 0 0 1 1 0 0 1 0 1 0 1 1 0 1 1 1 1 0 1 1 1 0 0 0 1 1
  ##  [69] 1 1 1 1 1 1 1 0 1 0 0 1 0 1 0 1 1 1 1 0 1 0 1 0 0 0 0 0 0 1 0 1 1 1
  ## [103] 1 1 1 1 0 0 1 1 1 0 1 0 1 0 0 1 0 1 0 1 1 1 0 1 0 1 1 1 1 0 1 0 1 1
  ## [137] 0 1 0 0 0 0 1 0 1 1 1 1 1 0 1 1 0 0 1 1 1 1 1 0 0 1
  ## 
  ## $weights[[59]]
  ##   [1] 1 1 0 1 0 1 0 1 0 0 0 1 1 0 1 1 1 1 1 1 0 1 0 1 1 0 0 1 1 0 0 1 0 0
  ##  [35] 1 1 0 1 0 1 1 0 1 1 1 1 1 1 1 0 0 1 1 0 0 0 1 1 1 1 1 1 1 1 1 0 1 1
  ##  [69] 0 0 1 0 0 1 1 1 1 1 1 0 1 0 0 1 1 1 0 1 1 0 1 1 1 1 0 0 0 0 1 1 1 0
  ## [103] 1 0 0 0 1 1 1 1 1 1 1 1 0 0 0 1 1 1 1 1 1 1 1 1 0 0 1 1 1 0 1 1 1 1
  ## [137] 0 1 0 1 1 1 1 1 0 1 0 1 0 0 0 1 0 0 1 1 1 1 0 0 0 0
  ## 
  ## $weights[[60]]
  ##   [1] 1 1 0 1 0 1 0 0 0 1 1 1 1 0 0 1 0 1 1 1 0 0 1 0 1 0 1 0 1 1 1 1 1 1
  ##  [35] 1 1 0 1 1 1 1 1 1 0 0 0 1 1 1 0 1 1 1 1 1 0 1 1 0 1 1 1 1 1 0 1 0 1
  ##  [69] 0 1 1 0 0 1 0 1 1 0 1 0 1 1 1 0 1 1 1 1 1 1 1 0 0 1 0 0 1 0 1 0 1 0
  ## [103] 0 0 0 0 1 1 1 0 0 1 1 1 1 1 1 1 1 1 0 1 1 1 1 1 1 0 0 0 0 1 1 1 0 1
  ## [137] 1 1 1 1 0 1 0 1 0 1 0 1 0 0 0 0 1 1 1 1 1 1 0 0 0 0
  ## 
  ## $weights[[61]]
  ##   [1] 0 1 0 1 1 1 1 1 1 0 1 1 1 0 0 1 1 1 1 0 0 0 1 0 0 1 0 1 0 0 1 1 1 1
  ##  [35] 1 1 0 1 1 1 1 0 0 1 1 1 1 1 1 0 1 1 0 1 1 0 0 1 0 0 0 1 1 1 1 0 0 1
  ##  [69] 0 1 1 0 1 1 0 1 0 1 0 1 0 1 1 1 0 1 0 1 1 0 1 1 0 0 0 0 1 1 0 0 1 0
  ## [103] 1 0 1 1 1 0 1 0 0 1 0 1 1 1 0 1 0 1 1 1 1 1 0 1 1 0 1 1 0 0 1 1 1 0
  ## [137] 0 1 0 0 1 1 1 0 0 1 1 1 1 1 1 1 0 1 1 1 1 1 0 1 1 1
  ## 
  ## $weights[[62]]
  ##   [1] 0 0 0 1 1 1 1 1 1 0 1 0 1 0 1 1 1 1 1 1 1 0 0 1 1 1 1 0 0 0 1 0 0 0
  ##  [35] 1 0 1 1 0 1 1 0 1 0 1 0 1 1 1 0 1 1 1 1 1 0 0 1 1 0 0 1 1 0 0 1 0 0
  ##  [69] 1 1 1 0 1 0 0 1 0 1 0 1 0 1 1 1 0 1 1 1 1 1 0 1 0 0 0 1 1 0 1 1 1 1
  ## [103] 1 1 0 0 1 1 0 1 1 1 1 1 1 1 1 0 1 0 1 0 0 1 1 0 1 1 1 1 1 1 1 1 1 1
  ## [137] 0 0 0 1 1 1 0 1 1 1 1 1 1 0 0 1 0 1 1 0 1 0 1 0 0 0
  ## 
  ## $weights[[63]]
  ##   [1] 1 1 1 1 1 1 1 0 0 0 1 0 1 1 1 0 0 0 0 1 1 0 0 0 1 1 0 1 0 1 1 1 0 1
  ##  [35] 1 0 1 1 1 1 1 1 1 1 0 1 1 1 1 1 1 1 1 1 0 0 1 1 0 1 1 1 1 1 1 0 1 0
  ##  [69] 1 0 0 1 0 1 1 1 1 1 1 1 1 0 0 1 0 0 1 0 0 0 0 1 1 0 1 0 0 0 1 1 0 0
  ## [103] 1 1 0 0 1 1 0 0 1 1 1 0 0 1 0 1 0 1 1 0 1 1 1 0 0 0 1 1 1 1 1 1 1 1
  ## [137] 1 1 1 0 1 1 0 1 0 1 1 1 0 1 1 1 1 0 1 0 0 0 1 1 0 0
  ## 
  ## $weights[[64]]
  ##   [1] 1 1 0 1 1 1 1 1 0 1 0 1 0 0 1 1 1 0 1 1 1 1 1 1 1 0 0 0 1 1 1 1 1 0
  ##  [35] 0 1 1 0 1 0 0 1 1 1 1 1 0 1 1 1 0 0 1 1 1 0 0 0 1 1 1 1 1 0 1 1 1 0
  ##  [69] 0 0 1 1 0 0 0 1 1 1 0 1 0 0 1 0 1 0 1 1 0 0 1 1 1 1 1 1 0 1 1 1 0 1
  ## [103] 1 1 1 0 0 0 1 1 1 0 1 1 0 1 1 0 1 0 1 1 1 1 0 1 0 0 0 1 0 1 0 1 0 1
  ## [137] 0 0 1 1 1 1 0 0 0 1 1 0 0 1 1 1 1 1 1 0 1 1 1 0 1 0
  ## 
  ## $weights[[65]]
  ##   [1] 0 0 1 1 1 1 1 0 1 0 1 1 1 0 1 1 0 1 1 0 0 0 1 0 0 1 0 0 1 1 1 0 1 1
  ##  [35] 0 1 1 0 1 0 1 0 1 1 0 1 1 0 1 1 1 1 1 1 0 1 0 1 1 1 0 0 0 0 0 1 1 1
  ##  [69] 1 1 1 1 0 0 0 0 1 1 0 0 1 1 1 1 0 1 0 0 0 1 1 0 1 0 0 0 1 1 1 0 1 0
  ## [103] 0 1 1 0 1 1 0 1 1 1 1 1 0 1 0 1 1 1 1 0 1 1 1 0 1 0 1 1 1 1 1 1 1 0
  ## [137] 0 1 1 1 1 1 0 1 1 1 0 0 1 1 1 0 0 1 1 1 0 1 1 1 0 1
  ## 
  ## $weights[[66]]
  ##   [1] 0 1 1 1 1 1 1 1 0 0 1 1 1 0 1 1 1 0 1 1 1 1 0 0 0 1 1 1 1 1 1 1 1 0
  ##  [35] 1 0 1 0 0 1 0 1 1 0 1 1 1 0 0 0 1 0 1 1 1 0 1 0 1 1 0 0 1 0 1 1 0 1
  ##  [69] 0 1 1 0 1 0 1 0 1 1 0 1 0 1 1 0 1 1 1 0 0 0 0 1 0 1 0 1 0 0 1 1 1 0
  ## [103] 1 1 1 1 1 0 1 0 0 0 1 0 0 0 0 1 1 1 1 1 1 0 0 1 0 1 1 0 1 1 1 0 1 1
  ## [137] 0 1 0 0 1 1 0 1 1 1 1 0 1 1 1 1 1 1 0 1 0 1 1 1 1 1
  ## 
  ## $weights[[67]]
  ##   [1] 0 1 0 1 1 0 1 1 0 1 0 1 1 0 1 1 1 1 1 0 1 1 1 1 0 0 0 0 0 0 1 0 0 1
  ##  [35] 1 0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 0 0 0 1 1 1 0 0 1 0 1 0 0 1 1 1
  ##  [69] 1 0 0 0 1 1 1 1 1 1 0 1 0 1 1 0 1 1 1 1 1 1 0 1 1 1 0 1 1 0 0 1 0 1
  ## [103] 1 1 0 1 0 1 1 1 1 1 1 1 1 0 0 0 0 1 1 1 1 0 0 1 1 1 0 0 1 1 1 1 0 0
  ## [137] 0 1 0 1 0 0 1 0 1 0 1 1 0 0 1 1 0 0 0 1 1 0 1 1 0 1
  ## 
  ## $weights[[68]]
  ##   [1] 1 0 1 1 1 1 0 0 0 1 0 0 1 1 0 1 1 1 1 1 0 1 1 1 1 1 1 0 0 0 1 0 1 1
  ##  [35] 0 0 1 0 1 0 0 0 0 1 0 1 1 1 1 1 1 0 1 0 1 0 0 1 1 0 1 1 1 1 0 0 1 1
  ##  [69] 1 1 1 1 1 1 1 1 0 0 0 0 0 1 1 0 1 0 1 1 0 1 1 1 0 1 1 0 1 0 1 1 1 0
  ## [103] 0 0 1 0 1 1 0 1 1 1 1 1 1 0 0 1 1 1 1 1 0 0 1 1 1 0 1 1 0 1 0 1 1 1
  ## [137] 1 1 0 1 0 1 0 1 1 0 0 1 1 1 0 1 1 1 1 0 0 1 0 0 1 1
  ## 
  ## $weights[[69]]
  ##   [1] 0 1 0 1 0 1 1 0 0 1 1 0 0 1 1 0 0 0 0 1 1 0 1 1 0 1 1 0 1 0 0 0 1 0
  ##  [35] 0 0 1 1 1 0 1 1 0 1 0 1 1 0 0 1 1 1 0 1 1 0 0 0 1 1 1 1 1 1 1 1 0 0
  ##  [69] 1 1 1 1 1 0 1 1 0 0 0 1 1 1 1 0 0 0 1 1 1 1 1 0 1 1 0 1 1 1 1 1 1 1
  ## [103] 1 0 1 1 1 1 0 1 1 1 1 0 1 1 0 1 1 1 1 1 1 0 1 0 1 1 0 1 0 1 1 0 1 0
  ## [137] 1 1 0 0 1 1 0 0 0 1 0 1 1 0 1 0 1 1 1 1 0 0 1 1 1 1
  ## 
  ## $weights[[70]]
  ##   [1] 0 1 0 0 1 1 1 1 0 0 1 0 1 1 1 1 0 1 1 1 0 1 1 0 1 1 1 0 1 0 0 1 1 0
  ##  [35] 1 0 1 1 0 1 1 1 0 1 1 1 0 1 1 1 1 1 1 0 1 0 0 1 0 1 1 0 1 1 1 0 1 0
  ##  [69] 0 0 0 0 1 1 1 1 1 1 1 0 0 1 0 0 0 1 0 1 1 0 1 1 1 1 1 1 1 0 1 1 1 0
  ## [103] 1 1 1 1 1 1 1 1 0 0 0 1 0 1 0 1 0 1 1 1 1 0 0 1 0 1 0 0 1 0 0 0 1 1
  ## [137] 1 1 0 1 1 0 1 0 0 0 0 1 1 1 1 0 1 1 1 1 1 0 1 1 1 0
  ## 
  ## $weights[[71]]
  ##   [1] 1 0 1 1 1 1 0 1 0 1 1 1 1 0 0 0 0 0 1 0 1 0 0 1 1 0 1 1 1 0 1 0 1 0
  ##  [35] 0 0 1 1 1 1 0 0 1 1 1 0 1 0 0 1 1 1 0 1 0 1 1 0 0 0 0 0 1 0 1 0 1 1
  ##  [69] 1 0 1 1 0 1 1 1 0 1 0 0 1 1 0 1 1 1 1 1 1 1 0 1 0 0 0 1 1 1 0 0 0 1
  ## [103] 1 1 1 1 0 1 1 1 1 0 0 1 1 1 1 1 0 1 1 1 1 0 1 1 0 0 1 1 1 1 0 1 0 1
  ## [137] 1 0 1 1 1 1 1 1 1 1 0 1 1 0 1 1 0 1 0 1 0 1 1 1 0 1
  ## 
  ## $weights[[72]]
  ##   [1] 0 0 0 0 1 0 0 1 1 1 1 1 0 0 0 1 0 1 0 1 1 1 1 1 1 1 0 1 1 1 1 1 1 0
  ##  [35] 1 0 1 0 1 1 1 1 1 0 1 0 1 1 1 0 0 1 1 1 1 0 1 0 1 1 1 1 0 1 1 1 0 1
  ##  [69] 1 1 1 0 0 1 0 0 1 0 1 0 1 0 1 1 1 1 1 1 0 1 0 0 0 1 1 0 1 1 0 0 1 1
  ## [103] 0 0 0 1 0 0 1 1 0 1 1 0 1 1 1 1 1 1 1 1 1 1 0 0 1 1 0 0 1 0 1 0 1 1
  ## [137] 0 1 1 1 1 0 0 0 0 1 1 0 1 0 1 0 1 1 1 1 1 0 1 0 1 1
  ## 
  ## $weights[[73]]
  ##   [1] 1 0 1 1 0 1 1 1 0 1 0 0 0 1 1 1 1 1 1 1 0 1 1 0 1 0 1 0 1 1 1 1 1 1
  ##  [35] 0 0 1 0 1 1 0 1 0 0 0 0 0 1 1 0 1 1 1 1 0 1 1 0 1 1 1 1 0 1 1 1 1 1
  ##  [69] 1 1 1 1 1 1 1 1 1 1 0 1 1 0 1 0 1 0 0 1 0 0 0 1 0 0 1 1 0 0 1 0 1 0
  ## [103] 1 0 1 1 1 0 1 1 1 0 1 0 1 1 1 1 0 1 0 1 1 0 0 1 0 0 0 1 1 1 1 1 1 1
  ## [137] 1 0 1 0 0 0 1 0 0 1 1 0 1 1 1 1 1 0 0 1 0 1 0 1 0 1
  ## 
  ## $weights[[74]]
  ##   [1] 1 0 1 1 1 1 1 1 0 0 1 1 1 0 0 0 1 1 1 1 1 1 1 0 1 1 0 0 1 1 0 1 1 0
  ##  [35] 1 1 1 1 1 0 0 1 1 1 0 1 1 1 1 1 0 1 0 1 0 0 0 1 0 1 0 0 1 0 1 0 1 1
  ##  [69] 0 1 1 1 1 1 1 0 1 1 0 1 0 1 0 1 1 1 1 1 0 1 1 1 1 1 1 0 1 1 0 1 0 0
  ## [103] 1 0 0 1 1 1 1 0 1 0 1 0 1 0 0 1 1 1 1 1 0 1 0 0 0 0 1 1 1 0 0 0 0 1
  ## [137] 0 1 1 0 0 1 1 1 1 0 0 1 1 0 1 1 0 1 0 1 0 1 0 1 1 1
  ## 
  ## $weights[[75]]
  ##   [1] 1 1 1 1 0 0 1 1 0 0 0 1 1 1 1 1 1 1 1 1 1 1 0 1 0 1 1 1 0 1 0 1 1 1
  ##  [35] 1 0 1 0 1 1 0 0 1 1 0 1 1 1 0 0 0 0 1 1 1 1 1 0 0 0 1 0 1 1 0 0 1 1
  ##  [69] 0 1 0 1 1 0 0 0 0 1 0 0 1 0 0 0 0 0 1 1 1 1 1 1 1 0 1 1 1 1 1 1 0 1
  ## [103] 0 1 0 1 1 1 1 1 1 1 0 1 1 1 1 0 1 1 0 0 0 0 1 1 0 0 1 1 0 1 0 1 1 0
  ## [137] 1 0 0 1 0 1 1 1 0 1 1 0 1 1 1 1 1 1 1 1 0 1 1 0 1 0
  ## 
  ## $weights[[76]]
  ##   [1] 0 1 0 1 1 1 1 1 0 0 1 1 1 0 0 1 1 1 0 0 1 1 1 1 1 0 1 1 1 1 0 1 1 0
  ##  [35] 1 1 1 1 1 0 1 0 1 1 0 1 1 1 1 1 0 0 1 1 0 1 1 1 0 1 1 1 1 1 1 0 0 1
  ##  [69] 0 1 1 1 0 1 1 1 1 1 1 0 1 1 1 1 1 1 1 1 1 0 1 0 0 1 0 0 0 1 1 1 1 0
  ## [103] 1 0 1 0 0 1 0 1 0 0 0 1 0 1 0 0 0 1 1 0 0 1 0 0 1 1 0 0 0 1 0 0 0 1
  ## [137] 1 1 0 1 1 1 0 1 0 1 1 1 0 1 1 1 0 1 1 0 1 0 0 1 0 1
  ## 
  ## $weights[[77]]
  ##   [1] 1 0 1 1 1 1 0 0 0 1 1 0 1 1 1 1 1 1 1 1 1 1 1 0 0 1 1 1 1 1 0 0 1 0
  ##  [35] 1 1 1 1 0 1 1 1 0 0 0 1 1 0 0 1 1 1 1 0 1 0 1 1 0 0 0 1 0 1 1 1 1 1
  ##  [69] 1 1 0 0 0 0 0 1 1 1 1 1 1 0 1 0 0 0 0 1 1 1 1 1 0 1 1 1 1 1 0 1 1 1
  ## [103] 1 0 1 1 0 0 0 0 1 0 0 1 0 1 1 1 1 1 1 1 1 0 0 1 0 1 1 0 1 1 0 0 1 1
  ## [137] 0 1 1 0 1 0 1 0 0 0 1 0 1 1 1 0 0 1 0 1 0 1 1 1 1 0
  ## 
  ## $weights[[78]]
  ##   [1] 0 0 1 1 0 0 1 1 0 1 1 1 0 0 0 1 0 1 0 1 0 1 1 1 1 0 1 1 0 0 0 1 0 1
  ##  [35] 0 1 1 1 1 1 1 1 1 1 1 0 0 1 1 1 0 0 1 1 0 0 1 1 1 1 0 1 1 0 0 1 0 0
  ##  [69] 1 1 1 1 0 0 1 1 1 0 1 1 0 1 0 1 1 1 0 1 1 1 1 1 1 1 0 0 0 0 0 1 0 0
  ## [103] 1 0 0 1 1 0 0 1 1 0 0 0 1 1 1 1 1 0 1 1 0 1 1 0 1 1 1 1 1 1 1 0 1 1
  ## [137] 1 1 0 0 0 1 1 0 0 1 1 1 1 1 1 0 1 1 1 1 1 1 1 0 1 0
  ## 
  ## $weights[[79]]
  ##   [1] 0 0 0 1 1 1 1 1 1 0 1 1 1 0 1 0 0 0 1 0 1 1 1 1 0 1 1 0 1 1 1 0 0 1
  ##  [35] 1 1 1 1 1 0 1 1 0 0 1 0 1 1 0 1 1 0 1 1 1 0 0 1 1 1 1 0 0 1 1 0 1 1
  ##  [69] 1 0 1 1 0 1 1 0 0 0 1 1 0 0 1 1 0 1 0 1 0 1 1 1 1 1 1 0 1 1 0 0 1 0
  ## [103] 1 1 1 1 1 1 0 0 0 1 0 0 1 1 1 1 0 0 1 1 0 1 1 1 0 0 1 1 0 1 1 1 1 0
  ## [137] 1 1 1 1 0 1 1 1 0 0 1 1 0 0 1 1 1 0 0 0 1 1 1 1 0 0
  ## 
  ## $weights[[80]]
  ##   [1] 1 1 1 1 1 1 0 0 1 1 1 0 1 1 1 1 0 1 0 0 0 1 1 1 1 0 1 1 1 1 1 1 1 0
  ##  [35] 0 0 1 1 1 0 0 1 1 0 1 0 0 0 1 0 0 0 1 0 1 1 1 1 0 1 1 1 1 1 1 1 1 1
  ##  [69] 0 1 1 1 1 0 1 0 0 0 0 1 1 0 0 1 1 1 1 1 0 1 1 0 1 1 1 1 0 0 0 0 1 1
  ## [103] 0 0 0 1 0 0 0 1 1 1 1 1 1 1 0 0 1 0 0 1 1 1 1 0 0 1 0 0 1 1 1 1 1 0
  ## [137] 0 1 1 0 0 0 1 1 1 1 1 0 1 1 1 0 1 0 1 1 1 1 0 1 1 0
  ## 
  ## $weights[[81]]
  ##   [1] 1 0 1 0 1 1 0 0 0 1 0 0 0 1 1 1 0 0 1 1 1 1 1 1 1 1 1 0 1 1 1 1 0 1
  ##  [35] 1 0 1 1 1 1 1 1 1 1 1 1 0 1 0 1 0 1 0 1 1 0 1 0 0 1 0 1 0 0 1 1 0 0
  ##  [69] 0 1 0 0 1 1 1 1 1 1 1 1 0 0 1 0 1 1 1 1 0 0 0 1 0 1 1 1 1 0 1 1 1 1
  ## [103] 1 1 1 0 1 0 1 0 0 1 1 1 1 0 1 0 0 1 1 0 1 1 1 0 1 1 0 0 1 1 1 1 0 1
  ## [137] 0 0 1 1 0 0 1 1 1 0 1 1 1 0 0 1 0 0 1 0 0 0 1 1 1 1
  ## 
  ## $weights[[82]]
  ##   [1] 1 1 0 1 0 1 1 1 1 1 1 1 0 0 0 0 1 0 1 0 1 1 1 1 1 1 0 0 1 1 1 1 0 1
  ##  [35] 0 1 0 0 0 1 1 0 0 0 1 1 1 0 1 1 1 1 0 0 1 0 0 0 1 1 0 1 0 0 1 1 1 0
  ##  [69] 1 1 1 1 1 1 1 0 0 1 1 0 1 1 1 1 1 0 1 1 1 0 1 0 1 1 1 1 1 1 1 1 0 0
  ## [103] 1 0 1 0 1 0 1 1 1 0 0 1 1 0 0 1 0 1 0 1 1 1 0 1 0 0 0 1 0 1 0 1 1 1
  ## [137] 0 0 0 1 1 0 1 1 1 1 1 0 1 1 1 1 1 1 1 1 1 0 0 0 1 0
  ## 
  ## $weights[[83]]
  ##   [1] 1 1 0 0 0 1 1 1 1 0 1 0 1 0 1 1 0 1 0 1 0 1 0 0 1 1 0 1 0 1 0 0 0 1
  ##  [35] 0 1 1 1 0 1 1 1 1 1 1 1 0 1 1 1 0 1 0 1 1 0 0 1 1 0 1 0 0 1 1 0 1 1
  ##  [69] 1 0 0 1 1 1 1 0 0 0 1 0 1 1 0 0 1 1 1 1 0 1 0 0 1 1 0 0 0 0 0 1 0 1
  ## [103] 0 1 1 1 1 1 1 0 0 1 1 0 1 1 1 1 0 1 0 1 1 1 1 0 1 1 0 0 1 1 1 0 1 1
  ## [137] 1 0 1 1 1 1 1 1 0 1 1 1 1 1 1 1 1 0 1 1 1 0 1 0 1 0
  ## 
  ## $weights[[84]]
  ##   [1] 0 1 1 0 0 1 1 1 1 1 1 1 1 0 0 1 1 0 0 1 0 0 1 1 1 0 1 1 1 0 1 1 0 1
  ##  [35] 1 1 0 1 0 1 1 0 0 1 0 1 1 1 0 0 1 0 1 0 1 1 0 0 1 0 1 0 1 1 1 1 0 1
  ##  [69] 0 1 1 1 0 0 1 0 0 1 1 1 1 1 1 1 0 1 1 1 1 1 1 0 1 0 1 0 1 0 1 1 0 1
  ## [103] 1 1 1 0 1 1 0 0 1 0 0 0 1 0 0 1 1 1 1 1 1 1 1 0 1 1 1 0 1 0 0 1 1 0
  ## [137] 0 1 1 0 0 1 1 1 0 1 1 0 0 0 1 1 1 1 1 1 0 1 1 0 0 1
  ## 
  ## $weights[[85]]
  ##   [1] 0 1 1 1 1 1 1 0 1 1 0 0 1 1 1 1 1 0 1 1 0 0 1 1 0 0 0 1 0 1 0 0 1 1
  ##  [35] 1 1 1 0 1 1 1 1 1 1 1 0 1 1 1 0 0 1 1 0 1 1 0 0 0 0 1 1 0 1 0 0 1 1
  ##  [69] 1 0 1 0 0 1 1 1 1 1 1 1 1 1 1 1 1 1 0 1 1 0 1 0 1 1 0 1 1 1 1 0 0 1
  ## [103] 1 1 0 0 1 0 1 1 0 1 1 0 0 0 1 1 0 1 0 1 0 0 1 1 1 1 1 0 0 1 1 0 0 0
  ## [137] 0 1 1 1 1 0 1 1 1 1 0 0 1 1 1 1 0 0 0 1 1 0 0 1 1 0
  ## 
  ## $weights[[86]]
  ##   [1] 1 1 0 0 0 0 1 1 1 1 1 0 0 1 1 1 0 0 1 1 1 0 0 1 1 0 1 1 0 1 1 1 1 1
  ##  [35] 0 1 1 1 1 1 1 1 1 0 1 1 1 0 0 0 1 0 1 0 1 0 1 0 1 1 1 1 1 0 1 1 1 0
  ##  [69] 0 1 0 0 1 1 1 1 1 0 1 1 0 0 1 0 1 1 1 1 0 0 1 1 0 1 1 0 0 0 0 1 0 1
  ## [103] 1 1 1 1 1 1 0 0 0 1 1 0 1 0 1 1 1 1 1 1 0 0 1 1 1 1 0 0 0 0 1 0 1 0
  ## [137] 1 0 1 0 1 1 0 1 1 1 1 0 1 1 1 0 1 1 1 1 0 1 0 0 0 1
  ## 
  ## $weights[[87]]
  ##   [1] 0 1 0 0 1 0 1 0 0 0 1 0 1 0 1 1 1 1 1 1 1 1 1 1 0 1 1 1 0 0 1 1 1 1
  ##  [35] 1 0 1 1 1 0 0 1 1 1 0 1 1 1 0 1 1 1 1 1 0 1 0 1 1 1 1 0 0 0 1 1 1 0
  ##  [69] 1 0 0 1 0 0 1 0 1 1 0 1 1 0 1 0 1 1 0 0 1 0 1 1 0 0 0 1 0 1 0 1 1 0
  ## [103] 1 1 1 1 0 1 0 0 1 0 0 1 1 0 1 1 1 1 1 1 0 0 1 1 0 1 1 1 0 1 1 1 0 0
  ## [137] 1 1 1 1 1 1 0 1 1 0 0 1 0 1 0 1 1 1 1 1 1 0 1 0 1 0
  ## 
  ## $weights[[88]]
  ##   [1] 1 0 1 1 0 1 1 1 1 0 1 1 1 1 1 0 1 0 1 0 1 1 1 0 1 1 0 1 0 0 0 1 1 1
  ##  [35] 0 0 1 0 1 1 1 0 1 0 1 1 1 1 1 1 0 0 0 1 0 0 0 1 1 0 1 0 1 0 1 1 0 0
  ##  [69] 1 1 0 1 0 1 1 1 0 0 0 1 0 0 1 1 0 1 1 0 1 1 1 0 1 1 0 0 1 0 1 1 1 1
  ## [103] 1 0 1 1 0 0 1 0 1 0 1 1 1 1 1 0 1 1 1 1 1 0 1 1 0 1 0 0 0 0 0 0 1 1
  ## [137] 0 1 0 1 0 1 1 1 1 1 1 1 1 1 1 1 1 0 1 1 1 1 0 1 1 0
  ## 
  ## $weights[[89]]
  ##   [1] 0 0 1 1 0 1 0 0 1 0 1 0 1 0 0 0 0 0 1 1 1 1 0 0 1 1 1 1 0 1 0 0 1 0
  ##  [35] 1 1 0 1 1 0 1 0 1 1 1 1 1 1 0 1 0 1 1 1 1 1 1 1 1 0 1 0 1 1 1 0 1 0
  ##  [69] 1 1 1 0 1 1 1 1 0 1 1 1 1 0 1 1 0 0 1 1 1 1 1 1 1 1 1 1 1 0 0 1 0 0
  ## [103] 1 1 1 1 0 1 0 1 1 1 0 0 0 0 0 0 1 1 1 0 0 1 1 1 0 1 1 1 1 0 0 1 0 0
  ## [137] 1 1 1 0 0 1 1 0 1 1 0 1 1 1 1 1 1 0 0 1 1 1 0 0 1 0
  ## 
  ## $weights[[90]]
  ##   [1] 0 1 1 1 1 0 1 0 1 1 1 1 0 1 0 1 0 1 1 1 1 1 0 0 1 1 0 0 1 1 1 1 1 0
  ##  [35] 1 1 1 1 1 0 0 1 1 0 0 1 0 1 1 0 0 0 1 0 1 1 0 0 0 1 1 0 0 0 0 1 1 1
  ##  [69] 1 0 0 0 1 0 1 0 1 1 1 0 1 1 1 0 1 1 1 1 1 0 1 1 1 1 1 0 1 1 0 1 1 0
  ## [103] 1 0 1 1 1 1 0 0 1 0 1 1 0 1 1 1 1 0 1 0 1 1 0 0 0 1 0 1 0 0 1 1 0 1
  ## [137] 1 0 1 1 0 1 1 1 1 1 0 1 0 1 0 1 1 1 0 1 1 1 0 1 0 1
  ## 
  ## $weights[[91]]
  ##   [1] 1 1 0 0 1 0 1 1 0 1 1 1 0 0 0 0 1 0 1 1 1 1 0 0 1 1 1 1 0 0 0 1 0 1
  ##  [35] 1 0 0 0 1 1 0 1 1 1 1 1 1 0 1 1 1 1 1 0 1 0 1 1 1 1 1 1 1 0 1 1 1 0
  ##  [69] 1 1 0 0 1 1 1 1 1 0 1 0 1 1 1 0 0 0 0 1 1 1 0 1 0 1 0 1 1 0 0 1 0 0
  ## [103] 1 0 1 1 1 0 1 1 1 0 0 0 0 1 1 1 0 1 1 0 1 0 1 0 1 0 1 1 1 1 1 1 1 1
  ## [137] 0 1 1 1 1 1 0 0 1 0 0 0 1 1 1 1 0 1 0 0 1 0 1 1 1 1
  ## 
  ## $weights[[92]]
  ##   [1] 1 0 1 1 1 0 1 1 1 1 1 1 0 0 0 1 0 1 1 1 0 1 1 0 1 1 0 1 1 0 1 0 1 1
  ##  [35] 1 1 1 1 0 1 0 1 0 1 0 0 0 1 1 0 0 0 0 1 1 0 0 1 1 0 1 0 1 0 0 0 0 0
  ##  [69] 0 1 1 0 0 1 1 0 1 1 1 1 1 0 0 0 1 1 1 0 0 1 1 1 0 1 0 0 1 0 0 1 0 0
  ## [103] 0 0 0 1 1 1 1 1 1 1 1 0 0 1 1 1 1 1 1 1 0 0 1 1 1 1 1 1 0 0 1 1 1 1
  ## [137] 0 1 1 1 1 0 1 1 0 1 1 1 0 1 1 1 1 1 1 1 1 1 1 1 1 0
  ## 
  ## $weights[[93]]
  ##   [1] 1 0 1 0 0 1 1 1 1 1 1 0 1 1 1 0 1 1 0 1 0 1 1 1 1 1 0 1 0 0 1 1 1 1
  ##  [35] 1 0 1 1 0 0 1 1 1 0 0 1 0 1 0 1 1 1 1 1 1 1 0 0 1 1 0 1 0 1 0 1 1 0
  ##  [69] 1 0 0 0 0 1 1 0 0 1 1 1 0 1 1 0 1 0 1 1 0 1 1 0 0 1 1 0 0 1 0 0 0 0
  ## [103] 1 1 1 1 0 1 1 0 0 0 0 0 0 1 1 1 1 0 0 0 1 1 0 1 1 1 0 1 1 1 0 1 1 1
  ## [137] 1 1 1 0 1 0 1 1 1 1 0 1 1 1 1 1 1 0 1 1 0 1 1 1 1 0
  ## 
  ## $weights[[94]]
  ##   [1] 1 1 1 1 1 0 1 0 0 1 1 1 1 1 1 1 0 0 0 1 1 0 1 0 1 1 0 1 1 1 0 1 0 1
  ##  [35] 0 0 1 0 0 1 0 1 0 1 1 1 0 1 1 1 1 0 1 0 1 1 1 1 1 1 1 0 1 1 1 0 0 1
  ##  [69] 1 1 1 0 0 1 1 1 1 1 1 1 1 1 0 0 1 0 1 0 1 1 1 1 1 1 1 0 0 1 1 1 0 1
  ## [103] 1 1 1 1 0 1 0 1 1 1 0 1 1 0 1 1 0 1 0 1 1 1 1 1 0 0 0 1 1 1 1 1 0 0
  ## [137] 0 0 0 0 1 0 1 1 0 1 1 0 0 0 1 0 0 0 1 1 0 0 1 0 0 0
  ## 
  ## $weights[[95]]
  ##   [1] 1 0 0 1 0 0 1 0 1 1 1 1 0 1 1 0 1 1 1 1 0 0 1 0 0 1 1 1 1 0 1 1 0 0
  ##  [35] 0 1 1 1 1 0 0 1 1 0 1 0 1 0 1 0 1 1 1 0 1 1 0 0 1 0 1 0 1 1 1 1 1 1
  ##  [69] 0 0 1 1 1 1 0 0 0 1 1 0 1 1 1 0 0 1 1 0 1 1 0 1 0 0 1 1 1 0 1 1 0 1
  ## [103] 0 1 1 1 1 1 0 1 0 1 1 1 0 0 1 1 1 0 0 1 1 0 0 1 1 0 0 1 1 1 0 1 1 1
  ## [137] 1 1 1 0 1 0 0 1 1 0 1 1 1 1 1 1 1 1 0 0 1 1 0 0 1 1
  ## 
  ## $weights[[96]]
  ##   [1] 1 1 0 1 1 1 1 1 0 1 1 1 1 0 0 1 0 1 1 0 1 1 1 0 1 1 1 0 1 0 1 1 1 0
  ##  [35] 0 1 0 0 1 1 1 1 0 1 1 0 1 0 0 0 1 1 1 0 0 0 1 1 1 1 1 1 1 1 0 1 1 1
  ##  [69] 0 1 0 1 1 0 1 0 1 0 1 1 1 1 1 1 1 0 1 0 1 0 1 0 0 0 0 0 0 1 1 1 1 0
  ## [103] 1 0 0 1 0 0 0 1 0 0 0 1 1 0 1 1 0 1 1 1 0 0 0 1 1 1 1 0 1 0 1 1 1 0
  ## [137] 1 1 1 1 1 0 0 1 1 1 1 1 0 1 0 1 1 0 1 1 0 1 1 0 1 1
  ## 
  ## $weights[[97]]
  ##   [1] 1 1 1 0 0 0 0 1 1 0 1 0 0 0 1 1 1 1 1 1 1 0 1 1 0 1 1 1 0 0 1 0 0 1
  ##  [35] 0 1 1 1 0 0 1 1 0 1 1 1 1 0 0 0 1 1 1 0 1 1 1 1 0 0 1 0 1 1 0 1 1 0
  ##  [69] 1 1 0 0 1 1 1 1 1 1 1 0 1 1 1 1 1 0 1 0 0 0 1 0 1 1 1 1 1 0 0 0 1 0
  ## [103] 1 0 1 0 1 1 0 1 1 1 1 1 0 1 1 0 1 0 1 1 1 0 1 1 0 1 1 1 0 1 1 1 1 0
  ## [137] 0 1 0 1 1 0 1 0 1 1 0 0 0 0 1 0 1 0 1 1 1 1 1 0 1 1
  ## 
  ## $weights[[98]]
  ##   [1] 0 1 1 1 1 1 0 0 1 0 0 1 1 1 1 1 1 1 1 1 0 1 1 1 1 1 0 1 0 1 1 1 1 1
  ##  [35] 1 1 1 1 1 1 1 1 0 0 1 0 1 1 0 1 0 1 0 1 0 0 1 0 1 1 1 1 0 1 0 1 1 0
  ##  [69] 0 0 1 1 1 1 1 0 1 0 0 0 1 0 0 1 1 1 0 0 1 1 0 0 1 0 1 0 1 1 0 0 0 1
  ## [103] 0 1 1 1 0 1 1 1 1 1 0 1 1 0 1 0 1 1 0 1 1 0 1 1 1 1 1 1 0 0 0 0 0 1
  ## [137] 0 1 1 1 0 0 1 1 1 0 1 0 1 1 1 1 1 1 0 0 0 1 0 0 1 0
  ## 
  ## $weights[[99]]
  ##   [1] 1 1 1 1 0 1 1 1 0 1 0 1 1 1 1 1 1 0 1 1 1 0 1 1 0 1 1 1 1 0 1 1 0 1
  ##  [35] 0 0 0 1 0 1 1 0 0 1 0 1 1 1 1 0 1 0 0 0 1 1 1 1 1 1 1 0 0 0 1 1 0 0
  ##  [69] 0 1 1 1 1 1 1 0 1 0 0 1 1 1 0 1 1 1 0 1 1 0 0 1 0 0 1 0 0 0 0 1 1 1
  ## [103] 0 1 1 1 0 0 1 0 1 1 0 1 1 1 1 1 1 0 1 1 1 1 1 0 0 1 0 0 1 1 0 1 1 0
  ## [137] 1 0 1 1 1 1 0 0 0 1 0 1 1 0 0 0 1 0 1 1 1 1 1 0 1 1
  ## 
  ## $weights[[100]]
  ##   [1] 0 1 1 0 1 1 0 1 0 1 0 1 1 1 1 1 1 0 1 0 0 1 1 1 1 1 1 0 1 1 1 0 0 0
  ##  [35] 1 0 0 1 1 0 1 0 1 0 1 1 1 1 1 0 0 1 1 0 1 1 0 1 0 1 1 0 1 1 0 1 1 1
  ##  [69] 1 0 1 1 0 1 1 0 0 1 0 1 1 1 0 0 1 1 1 1 0 1 1 1 1 1 1 1 1 1 1 0 1 1
  ## [103] 1 0 0 0 1 0 1 1 1 1 1 1 0 1 1 1 1 1 0 1 0 1 1 1 1 0 0 1 1 1 0 1 0 0
  ## [137] 0 0 0 0 1 0 1 0 0 1 0 1 1 0 0 1 1 1 0 0 0 0 1 1 1 0
  ## 
  ## $weights[[101]]
  ##   [1] 1 1 1 1 0 1 0 0 1 1 1 1 1 1 1 1 1 0 1 1 1 0 1 0 1 1 0 1 1 1 0 0 0 1
  ##  [35] 1 1 0 0 0 1 0 1 0 1 1 1 1 1 1 1 0 1 0 1 0 1 0 1 0 1 0 0 0 0 1 0 1 1
  ##  [69] 1 1 1 0 0 0 1 1 1 0 1 1 0 0 0 1 1 1 1 1 1 1 1 1 0 1 1 1 0 0 1 1 0 1
  ## [103] 0 1 1 0 1 1 1 0 1 1 0 1 0 1 0 0 1 1 1 0 0 1 0 1 0 1 0 1 0 0 0 1 1 1
  ## [137] 1 1 0 1 1 1 0 1 1 1 0 1 1 0 1 1 1 1 0 1 1 1 0 0 0 0
  ## 
  ## $weights[[102]]
  ##   [1] 0 1 1 1 0 1 1 0 1 1 0 1 0 1 1 1 1 0 1 1 0 1 1 0 0 0 0 1 1 1 1 1 0 1
  ##  [35] 0 0 0 0 1 1 1 0 1 0 1 1 0 0 1 1 1 0 0 0 1 1 1 1 1 1 0 1 1 0 0 1 0 1
  ##  [69] 1 1 0 0 0 1 1 1 1 1 1 1 1 0 1 1 0 0 1 1 1 1 1 1 0 1 1 1 0 1 1 1 1 1
  ## [103] 1 1 0 1 0 1 1 0 1 0 1 0 0 1 0 0 1 0 0 1 1 1 1 0 0 1 1 0 1 0 0 1 1 1
  ## [137] 1 1 1 1 1 0 0 1 0 0 1 1 1 1 0 1 0 1 1 1 0 0 0 1 0 1
  ## 
  ## $weights[[103]]
  ##   [1] 1 1 0 0 0 1 1 0 1 1 0 1 1 1 1 1 1 1 0 0 1 0 0 0 0 1 1 0 1 1 0 1 1 1
  ##  [35] 1 1 1 1 1 1 1 1 1 1 1 0 0 1 0 1 0 1 0 1 1 1 0 1 1 1 1 0 0 1 0 0 1 1
  ##  [69] 0 1 1 1 0 1 1 0 0 1 0 0 0 0 0 1 1 0 0 0 1 1 1 0 1 1 0 0 0 1 1 1 1 1
  ## [103] 0 0 0 1 1 1 0 0 0 1 1 1 1 1 1 1 1 1 1 1 1 0 0 1 1 0 1 1 1 1 1 1 1 1
  ## [137] 0 0 1 1 0 0 0 0 0 0 1 1 1 0 1 1 0 1 0 1 1 1 1 1 1 0
  ## 
  ## $weights[[104]]
  ##   [1] 1 0 0 1 1 1 0 1 0 0 0 1 0 1 0 1 1 0 1 0 1 1 0 0 0 1 0 0 1 0 1 1 1 1
  ##  [35] 0 0 0 0 0 1 1 1 1 1 1 1 1 1 0 1 1 1 1 1 1 1 0 0 1 1 1 0 1 1 1 0 1 1
  ##  [69] 0 1 0 1 0 1 0 0 1 1 1 0 1 0 0 1 1 0 1 1 1 1 1 0 1 1 0 1 1 1 0 0 1 1
  ## [103] 1 1 1 1 0 0 1 0 0 1 1 1 0 1 0 0 1 0 0 1 1 1 0 1 1 0 1 1 1 1 1 0 1 1
  ## [137] 1 0 0 1 1 1 1 0 1 1 1 1 1 0 1 1 1 0 1 0 0 0 0 1 1 1
  ## 
  ## $weights[[105]]
  ##   [1] 0 1 1 0 1 1 1 1 1 1 1 1 1 1 1 1 0 1 1 0 1 0 1 0 1 0 0 1 0 1 1 0 1 1
  ##  [35] 0 0 1 1 0 1 1 1 1 1 0 1 1 1 0 0 0 1 0 1 1 1 1 1 1 0 0 1 0 1 0 1 1 1
  ##  [69] 1 1 0 1 0 0 1 1 1 1 1 1 0 1 1 0 1 0 1 1 1 1 1 1 0 1 1 1 0 1 1 0 0 0
  ## [103] 1 0 0 0 1 1 1 1 1 1 1 0 1 1 1 0 0 0 0 0 1 0 0 0 0 0 1 1 1 0 1 1 0 1
  ## [137] 1 1 0 0 1 0 1 1 1 0 1 0 1 1 0 1 0 1 1 1 0 1 0 0 1 0
  ## 
  ## $weights[[106]]
  ##   [1] 1 0 0 1 1 0 1 1 1 1 1 1 0 0 0 1 1 0 0 1 1 1 0 1 0 0 1 1 0 1 1 1 0 1
  ##  [35] 1 0 1 1 0 1 1 1 0 0 1 1 1 1 1 1 1 1 1 1 1 1 1 0 0 1 1 0 0 1 1 1 1 0
  ##  [69] 0 1 1 1 1 1 1 0 0 0 1 0 1 0 1 0 1 1 0 0 0 0 1 1 1 1 0 0 1 1 1 1 1 0
  ## [103] 1 1 0 1 1 1 1 1 0 0 1 1 1 0 1 0 0 1 1 1 1 1 1 1 1 0 1 0 1 1 1 0 1 0
  ## [137] 0 0 1 1 0 1 0 0 0 1 0 0 1 1 1 1 0 0 1 0 1 0 0 1 0 1
  ## 
  ## $weights[[107]]
  ##   [1] 1 1 0 0 0 0 1 1 1 1 1 1 1 0 1 1 0 1 0 1 1 1 0 0 1 1 1 1 0 1 0 0 1 0
  ##  [35] 1 1 1 1 0 1 1 0 0 1 1 1 1 1 1 1 1 1 1 1 1 0 1 0 0 0 0 0 0 0 0 0 0 1
  ##  [69] 1 0 1 0 0 0 1 0 1 0 1 1 1 1 1 0 0 0 0 0 1 1 1 1 1 1 0 1 1 1 1 1 1 1
  ## [103] 1 0 1 1 1 1 0 1 1 1 1 0 1 1 1 0 1 0 0 1 1 0 1 1 0 0 1 1 1 1 0 1 1 0
  ## [137] 1 1 0 1 1 0 1 0 1 1 0 1 0 1 1 0 0 0 1 1 1 0 1 1 1 0
  ## 
  ## $weights[[108]]
  ##   [1] 0 0 0 0 0 0 1 1 1 1 0 1 1 0 0 1 1 1 1 0 1 0 1 1 1 1 1 1 1 0 0 0 1 1
  ##  [35] 0 1 1 1 0 1 1 1 0 1 0 1 0 1 0 1 1 1 1 0 1 1 0 0 1 0 1 1 1 1 1 1 1 0
  ##  [69] 1 0 0 1 0 1 1 1 1 1 1 1 1 1 1 1 0 1 0 0 1 0 1 0 1 1 0 1 1 1 0 1 0 1
  ## [103] 1 1 1 0 0 0 0 1 1 0 0 0 0 1 1 0 1 0 1 1 1 1 1 0 1 1 1 1 1 0 0 1 1 1
  ## [137] 0 1 1 1 0 1 0 1 1 0 1 1 0 1 0 1 1 0 1 1 0 1 0 0 0 1
  ## 
  ## $weights[[109]]
  ##   [1] 1 0 0 0 1 0 0 0 0 1 1 0 1 1 1 0 1 0 1 0 0 0 1 0 1 1 1 1 1 1 0 0 1 1
  ##  [35] 0 1 1 1 0 1 0 1 0 0 1 1 1 1 1 1 0 0 0 1 1 0 0 1 1 1 1 1 1 1 1 1 1 1
  ##  [69] 0 1 1 0 0 0 1 1 0 1 0 1 1 1 1 1 0 1 0 1 1 1 0 1 0 1 1 0 1 1 0 0 0 0
  ## [103] 1 1 1 0 1 1 1 0 0 0 1 1 1 0 1 1 0 1 0 1 1 1 0 1 1 1 1 0 1 1 0 1 1 0
  ## [137] 1 1 1 1 1 1 1 1 1 0 0 0 0 1 1 1 0 1 1 0 1 0 1 0 1 1
  ## 
  ## $weights[[110]]
  ##   [1] 1 1 1 1 0 1 1 1 1 0 1 1 0 1 0 0 0 0 1 0 1 0 1 1 1 0 0 1 1 0 0 0 1 1
  ##  [35] 1 1 1 1 1 1 0 0 0 1 1 1 0 1 1 1 1 1 1 0 1 1 1 1 1 0 0 1 0 1 0 1 0 1
  ##  [69] 0 0 0 1 1 0 1 0 1 1 1 1 1 1 0 0 1 1 0 0 0 0 0 1 1 0 1 1 1 0 0 1 1 1
  ## [103] 1 1 0 0 1 1 1 1 1 1 0 1 1 0 1 0 1 0 0 0 1 0 1 1 0 1 0 1 1 0 0 1 0 1
  ## [137] 1 1 1 1 0 0 1 1 1 1 1 1 1 0 0 1 0 1 1 1 1 1 0 1 0 1
  ## 
  ## $weights[[111]]
  ##   [1] 1 1 1 1 1 0 1 0 0 1 1 1 0 1 0 0 1 1 1 0 1 1 1 1 0 1 1 1 0 0 1 1 1 0
  ##  [35] 1 1 1 1 0 0 1 0 1 1 1 0 0 1 1 1 0 1 1 0 1 0 1 0 0 1 1 1 0 0 1 1 0 1
  ##  [69] 0 1 1 1 0 1 0 1 1 0 1 1 1 1 1 0 1 0 0 0 1 1 1 1 0 0 0 0 1 1 0 0 0 0
  ## [103] 1 1 0 0 1 1 1 0 0 1 1 1 1 1 0 1 1 1 1 1 1 1 0 1 1 0 1 0 1 1 1 0 0 0
  ## [137] 0 1 1 1 0 1 1 0 0 0 1 1 1 0 1 1 1 0 1 1 1 1 0 1 1 0
  ## 
  ## $weights[[112]]
  ##   [1] 1 1 0 1 1 0 0 0 0 0 1 0 1 1 1 1 1 1 0 0 1 0 0 0 1 1 0 0 0 0 0 1 1 1
  ##  [35] 1 1 1 1 1 0 1 0 0 0 1 0 1 1 0 1 1 1 1 0 1 1 1 1 0 1 0 0 1 1 1 1 1 1
  ##  [69] 0 0 1 1 0 1 1 1 1 1 1 1 1 1 1 0 1 0 1 1 1 1 1 1 1 0 1 0 0 0 1 1 1 1
  ## [103] 1 0 1 1 0 1 0 1 1 0 0 1 1 0 0 1 1 0 1 1 1 0 0 1 1 1 1 0 1 1 1 1 1 1
  ## [137] 0 0 1 1 0 1 1 0 1 1 1 0 0 0 1 1 0 0 1 1 0 0 0 1 1 0
  ## 
  ## $weights[[113]]
  ##   [1] 1 0 1 1 1 0 0 1 1 0 1 1 1 0 1 1 1 1 0 0 1 0 0 1 1 1 1 1 1 1 1 1 0 1
  ##  [35] 1 0 1 1 1 1 0 0 0 0 0 0 1 1 1 1 1 1 0 1 0 1 1 0 1 0 1 0 0 1 1 1 1 1
  ##  [69] 0 0 0 1 0 0 1 1 0 1 0 1 0 1 1 0 1 0 1 0 1 0 0 1 1 1 1 1 1 1 1 1 1 1
  ## [103] 1 0 1 1 1 0 0 1 0 0 0 1 1 1 1 0 1 1 0 0 1 1 1 1 1 1 1 0 1 0 1 1 1 0
  ## [137] 0 1 1 0 1 0 0 0 0 0 1 1 1 1 0 1 0 1 1 1 0 0 1 1 1 0
  ## 
  ## $weights[[114]]
  ##   [1] 1 1 1 1 1 0 0 1 1 0 1 0 1 1 1 1 0 1 1 1 0 1 1 1 0 1 0 0 1 0 1 0 0 1
  ##  [35] 1 1 0 0 1 0 1 0 1 1 1 0 1 0 0 0 1 1 1 1 1 0 0 1 1 1 1 0 0 0 0 1 0 0
  ##  [69] 0 0 0 1 0 1 1 1 0 0 1 0 0 1 1 1 0 1 1 1 1 0 1 0 0 1 0 1 1 1 1 0 1 1
  ## [103] 0 1 1 0 1 1 0 1 1 0 1 1 1 1 0 1 1 1 1 1 1 0 1 1 1 1 1 1 1 0 1 0 0 1
  ## [137] 0 1 1 1 0 1 0 1 1 1 0 1 0 1 0 0 1 1 0 1 0 1 1 1 1 1
  ## 
  ## $weights[[115]]
  ##   [1] 1 1 1 1 1 1 1 0 0 0 0 1 0 1 1 0 0 1 0 0 0 0 1 0 0 1 1 1 1 1 0 1 1 1
  ##  [35] 0 1 0 0 1 1 1 1 1 1 0 1 0 0 1 0 1 1 1 0 1 0 1 1 1 1 1 1 1 1 1 1 0 1
  ##  [69] 1 1 0 0 1 1 0 1 1 1 0 1 1 1 1 1 0 0 1 1 0 0 0 0 1 1 1 1 0 1 1 1 0 1
  ## [103] 1 1 1 1 0 1 1 0 1 1 1 1 0 0 0 0 0 1 1 1 0 1 0 1 1 0 1 1 1 0 1 1 1 1
  ## [137] 0 1 1 1 0 1 1 1 0 1 1 0 0 0 1 0 1 1 1 0 0 0 0 0 0 1
  ## 
  ## $weights[[116]]
  ##   [1] 1 1 0 1 1 1 1 1 1 1 0 1 1 1 1 1 0 1 1 0 0 0 1 1 1 1 0 0 1 0 1 1 1 1
  ##  [35] 1 0 1 1 0 1 0 1 0 0 1 0 0 1 1 1 1 0 0 1 1 1 1 0 0 0 1 1 1 1 0 0 1 1
  ##  [69] 1 0 1 1 0 0 1 0 1 0 0 1 1 1 1 0 0 1 0 1 1 1 1 1 1 1 1 0 1 0 0 1 1 0
  ## [103] 0 0 1 0 1 0 0 1 1 1 1 1 0 1 0 1 0 1 1 1 1 0 0 1 1 1 1 1 0 1 1 1 0 1
  ## [137] 0 1 0 1 0 0 1 1 0 0 0 1 1 0 1 1 0 0 0 1 1 1 1 1 0 1
  ## 
  ## $weights[[117]]
  ##   [1] 0 0 1 1 1 1 1 1 1 0 1 1 1 1 1 0 0 0 1 1 0 0 1 1 0 0 1 0 1 1 1 1 1 1
  ##  [35] 1 0 0 1 1 0 0 0 0 1 1 1 1 1 1 1 0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
  ##  [69] 0 1 0 0 0 0 1 0 1 1 1 1 1 1 0 1 1 0 0 1 1 1 1 0 0 0 1 1 0 1 0 1 0 1
  ## [103] 0 1 1 0 0 0 0 1 1 1 1 0 0 0 1 0 1 0 1 0 1 0 1 1 1 1 0 1 1 1 1 0 0 1
  ## [137] 0 1 1 0 0 1 1 1 0 0 0 0 1 1 1 1 0 1 1 1 0 1 0 0 0 1
  ## 
  ## $weights[[118]]
  ##   [1] 0 0 1 1 1 1 0 1 0 1 1 0 1 1 1 0 0 0 1 1 0 0 1 0 0 0 1 1 1 1 1 0 1 0
  ##  [35] 0 1 0 1 1 0 1 1 1 0 1 1 0 0 1 0 1 1 1 1 0 1 1 1 1 0 0 1 1 0 0 0 1 1
  ##  [69] 1 1 1 1 0 1 1 1 1 0 1 1 0 0 0 0 0 1 0 0 0 1 1 1 0 1 1 1 0 1 1 0 0 1
  ## [103] 0 0 0 0 0 1 1 1 1 0 1 0 0 1 1 0 1 1 1 1 1 1 1 0 1 1 1 1 0 1 1 0 1 1
  ## [137] 0 1 0 1 0 1 1 1 1 1 1 0 1 1 0 1 1 1 1 1 1 1 1 1 0 1
  ## 
  ## $weights[[119]]
  ##   [1] 1 0 0 1 0 1 0 0 0 1 1 0 0 0 1 0 0 1 0 1 1 1 1 0 1 0 1 0 1 1 1 1 1 1
  ##  [35] 0 1 0 0 1 0 1 1 1 0 1 1 0 0 1 0 1 1 1 1 1 0 0 0 1 0 0 0 1 1 1 1 1 1
  ##  [69] 1 1 1 0 1 1 0 0 1 0 1 1 0 0 1 0 1 0 1 1 0 1 1 0 1 0 1 1 1 1 1 1 1 1
  ## [103] 0 1 0 1 0 1 1 1 0 1 0 1 1 1 1 0 1 1 1 1 0 1 0 1 1 0 1 1 1 1 1 0 0 1
  ## [137] 1 1 1 1 1 0 1 1 1 1 0 1 1 0 0 1 0 1 0 0 1 1 0 1 0 1
  ## 
  ## $weights[[120]]
  ##   [1] 1 1 1 1 1 0 1 1 1 0 0 1 1 1 1 1 1 0 0 0 1 1 1 1 0 1 0 1 0 0 1 1 1 1
  ##  [35] 1 1 0 1 1 1 0 1 0 1 0 0 1 0 0 0 0 1 0 0 1 1 1 1 0 0 0 0 1 1 1 0 0 0
  ##  [69] 1 1 0 0 0 1 1 1 1 1 1 1 1 1 1 1 1 0 1 0 1 0 0 1 0 1 0 0 0 1 0 1 1 0
  ## [103] 1 1 1 0 1 1 0 1 1 0 1 1 1 1 1 1 1 1 0 1 0 0 1 1 0 0 1 0 0 1 0 1 0 1
  ## [137] 1 1 1 1 1 0 0 1 1 1 1 0 1 0 0 1 1 0 1 1 1 1 1 1 0 1
  ## 
  ## $weights[[121]]
  ##   [1] 0 0 1 0 1 1 1 1 1 1 0 1 1 1 1 1 1 0 1 0 1 1 1 1 1 1 1 1 1 1 1 1 0 0
  ##  [35] 0 1 1 1 1 0 1 1 1 0 1 1 0 0 1 0 1 1 0 0 1 0 0 0 0 1 0 1 1 0 0 1 0 1
  ##  [69] 0 1 0 0 1 0 1 1 1 0 0 1 0 1 1 0 1 1 1 0 0 1 0 1 1 0 1 1 1 0 0 1 0 1
  ## [103] 0 1 1 0 1 0 1 1 1 0 0 0 1 1 0 1 1 1 0 1 1 0 0 1 1 1 1 1 0 1 1 0 1 0
  ## [137] 1 1 1 1 1 1 0 1 0 1 0 0 0 0 0 1 1 1 1 1 0 1 1 1 1 1
  ## 
  ## $weights[[122]]
  ##   [1] 1 1 0 0 1 0 0 1 0 1 1 1 1 1 1 0 1 0 1 1 1 1 1 0 1 0 1 0 0 0 1 0 0 1
  ##  [35] 1 0 1 0 1 1 1 0 0 0 0 1 0 1 0 0 1 1 1 1 0 1 1 0 1 1 0 0 1 1 1 0 1 1
  ##  [69] 0 1 0 0 1 1 0 0 1 1 1 0 1 0 1 1 1 1 0 1 1 0 1 1 0 1 1 0 1 1 0 1 1 0
  ## [103] 1 0 0 1 0 0 1 0 1 0 0 1 1 1 0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 0 0 1 0 0
  ## [137] 1 1 1 1 1 0 0 1 1 1 1 1 0 1 0 1 1 1 0 0 1 1 1 0 1 1
  ## 
  ## $weights[[123]]
  ##   [1] 1 0 0 1 0 1 1 0 1 0 1 1 1 1 0 0 0 0 1 0 0 1 1 1 0 0 0 1 0 1 0 1 1 1
  ##  [35] 1 0 1 0 1 1 1 1 0 0 0 1 1 1 1 1 1 1 0 0 1 1 1 0 0 0 1 1 0 1 1 0 1 0
  ##  [69] 1 1 0 0 0 1 0 0 0 1 1 1 0 1 1 1 1 1 1 1 1 0 1 1 0 0 1 1 1 1 0 1 0 0
  ## [103] 1 1 1 1 1 1 0 1 0 1 1 1 1 1 1 1 1 0 1 0 1 1 0 0 1 0 0 0 1 0 1 0 1 1
  ## [137] 1 0 1 1 1 1 0 1 0 0 1 1 1 0 1 1 1 0 1 0 1 1 1 1 1 1
  ## 
  ## $weights[[124]]
  ##   [1] 1 1 1 0 0 1 1 1 0 1 0 1 1 1 0 1 1 1 1 0 1 0 1 0 1 1 0 1 1 1 0 1 0 0
  ##  [35] 1 1 1 1 1 1 1 1 1 1 0 1 0 0 1 0 1 1 1 1 1 0 1 0 0 1 0 0 1 0 1 0 1 0
  ##  [69] 0 1 1 1 0 0 1 0 0 1 1 0 1 1 0 1 1 1 0 1 0 1 1 1 1 1 1 0 1 1 0 1 1 0
  ## [103] 0 0 1 0 1 1 1 1 0 1 1 0 0 0 1 0 1 1 0 1 0 1 1 1 1 1 1 1 1 0 1 0 1 0
  ## [137] 0 0 1 1 0 0 1 1 1 1 0 0 1 1 0 1 0 1 1 1 1 1 0 1 0 0
  ## 
  ## $weights[[125]]
  ##   [1] 1 1 0 1 1 0 1 1 1 0 1 1 1 0 1 1 1 1 1 1 1 0 1 1 1 1 1 1 0 1 1 0 0 1
  ##  [35] 0 1 1 0 1 1 0 0 1 0 1 1 0 0 0 0 1 0 1 1 1 0 1 1 1 0 1 0 1 1 1 1 0 0
  ##  [69] 1 1 0 1 1 0 1 0 0 0 1 1 0 1 1 1 0 0 1 1 1 0 1 1 0 1 1 1 0 1 0 1 1 1
  ## [103] 1 1 1 1 0 0 0 1 1 0 1 1 1 0 1 0 1 1 1 0 1 1 0 1 1 1 1 1 0 1 0 0 1 0
  ## [137] 1 1 0 1 0 0 0 0 1 1 1 1 0 0 0 1 1 1 0 1 0 0 1 0 1 0
  ## 
  ## $weights[[126]]
  ##   [1] 1 0 1 0 0 0 0 1 1 0 0 1 1 1 1 1 1 1 1 1 1 0 1 1 1 1 1 1 0 0 0 1 0 0
  ##  [35] 1 1 0 1 1 0 0 1 0 0 1 0 1 0 0 0 1 1 1 1 1 0 1 1 0 1 1 1 0 0 0 1 1 1
  ##  [69] 1 1 1 1 1 0 1 1 1 1 1 0 0 1 1 1 1 1 1 1 0 0 1 0 0 1 1 1 1 1 0 1 1 0
  ## [103] 1 1 1 0 1 1 1 0 1 1 1 0 1 1 1 0 0 1 0 1 1 1 1 0 0 1 1 1 0 0 1 0 0 1
  ## [137] 1 1 1 0 0 0 1 0 0 1 1 0 0 1 0 1 1 0 1 0 1 1 1 0 0 1
  ## 
  ## $weights[[127]]
  ##   [1] 0 1 1 1 1 1 1 1 1 1 1 0 0 0 0 1 1 1 1 0 0 0 1 1 0 0 0 0 1 1 1 1 1 1
  ##  [35] 1 1 0 1 1 0 0 0 1 1 1 0 0 1 1 0 1 1 0 1 0 0 0 0 0 1 1 0 1 1 1 1 1 1
  ##  [69] 1 1 0 1 1 1 0 0 1 0 1 1 0 0 1 1 0 1 1 1 1 0 0 1 1 0 0 1 1 1 0 1 0 1
  ## [103] 1 0 1 1 1 1 1 0 0 1 0 1 1 0 1 1 0 1 1 1 1 1 0 0 1 1 0 0 1 0 0 0 1 1
  ## [137] 1 1 0 1 1 1 1 0 0 0 1 1 0 1 1 1 1 1 0 1 0 1 1 1 1 0
  ## 
  ## $weights[[128]]
  ##   [1] 1 0 1 1 0 1 1 0 1 1 1 1 1 1 0 1 0 1 1 1 1 1 0 1 0 1 1 1 1 0 1 0 0 1
  ##  [35] 0 0 0 1 1 0 1 0 0 0 1 0 1 0 1 1 0 1 1 1 1 1 0 0 1 1 1 0 1 1 1 1 0 1
  ##  [69] 1 0 1 1 1 0 0 0 1 0 1 1 0 0 0 0 1 1 1 1 0 1 1 1 0 1 1 1 1 1 0 1 1 0
  ## [103] 1 0 0 1 0 1 1 1 1 1 1 0 0 1 0 1 1 1 0 1 1 1 1 1 0 1 0 0 0 1 1 1 1 0
  ## [137] 1 0 0 0 0 1 0 1 1 1 0 0 1 1 1 1 0 0 1 0 1 0 1 1 1 1
  ## 
  ## $weights[[129]]
  ##   [1] 1 1 1 1 1 0 1 1 0 1 1 1 1 0 1 1 0 1 0 1 1 1 1 1 1 0 0 1 0 0 1 0 1 1
  ##  [35] 1 0 0 0 0 1 0 0 1 1 1 1 1 1 0 1 1 1 1 0 1 1 0 0 1 1 1 1 1 1 0 1 0 1
  ##  [69] 0 1 1 1 0 0 1 0 1 1 0 1 1 0 1 0 1 0 0 1 1 1 1 0 1 0 1 0 1 0 1 0 1 1
  ## [103] 1 0 0 0 1 1 1 1 1 0 0 1 1 0 0 0 1 1 0 1 1 1 0 1 0 1 0 0 1 1 1 1 0 0
  ## [137] 1 1 0 1 0 1 1 1 0 0 1 1 1 0 0 1 1 0 1 1 1 1 1 1 0 0
  ## 
  ## $weights[[130]]
  ##   [1] 0 1 1 1 1 1 1 0 1 1 0 0 1 1 0 0 0 1 0 0 1 0 1 1 1 1 1 1 1 0 1 0 1 1
  ##  [35] 1 0 1 1 1 1 1 1 1 0 0 0 0 1 0 1 1 1 0 0 0 1 1 0 1 1 0 1 1 0 1 1 1 0
  ##  [69] 0 1 0 1 1 0 0 1 0 1 0 0 0 1 1 1 1 1 0 1 1 0 1 1 1 1 0 0 1 1 0 1 1 1
  ## [103] 1 1 1 1 0 1 1 0 1 0 1 1 1 1 1 1 1 0 1 0 0 1 0 1 1 0 1 1 0 0 1 1 1 1
  ## [137] 0 0 1 1 1 1 1 0 0 0 1 1 0 1 1 1 0 1 0 0 1 0 1 1 0 0
  ## 
  ## $weights[[131]]
  ##   [1] 1 1 1 0 0 1 0 1 0 1 1 0 1 1 1 0 0 0 1 1 1 1 1 0 1 0 1 1 1 0 1 1 0 1
  ##  [35] 1 1 1 0 0 1 1 0 0 0 1 1 1 1 1 0 1 1 0 1 0 1 1 0 0 0 0 1 0 0 1 0 0 1
  ##  [69] 1 1 1 0 1 0 1 1 0 1 0 1 0 0 1 0 1 1 1 0 1 1 1 0 1 0 0 1 0 0 1 1 0 0
  ## [103] 0 1 1 1 1 1 0 0 1 0 1 0 1 1 0 0 1 1 1 1 0 1 1 1 1 1 0 1 1 1 1 1 1 0
  ## [137] 1 1 1 1 1 1 1 1 0 1 1 1 0 1 1 1 1 0 1 0 0 1 0 0 1 1
  ## 
  ## $weights[[132]]
  ##   [1] 1 0 1 0 1 0 1 1 1 0 0 0 1 1 0 1 0 1 0 1 1 0 1 1 1 1 0 1 0 1 1 1 1 1
  ##  [35] 1 0 1 1 0 0 0 1 0 1 1 1 0 0 1 0 1 1 0 0 1 1 1 1 1 1 0 1 0 0 0 1 1 0
  ##  [69] 1 1 1 1 0 1 1 1 0 1 1 0 0 1 0 0 1 0 0 0 0 1 1 1 1 1 1 0 0 1 1 0 0 1
  ## [103] 1 1 1 1 0 1 1 1 1 1 0 1 0 1 1 1 1 0 1 1 0 0 1 0 0 1 1 1 1 1 0 0 1 1
  ## [137] 1 1 1 0 1 1 1 0 0 1 1 0 0 1 1 1 0 1 1 1 0 0 1 1 0 1
  ## 
  ## $weights[[133]]
  ##   [1] 1 0 0 1 0 1 1 0 1 1 0 0 1 0 1 1 1 1 1 0 1 0 1 0 0 0 0 1 0 1 1 1 1 1
  ##  [35] 1 1 1 1 1 1 0 1 0 1 0 0 1 1 0 1 1 0 1 1 1 1 1 0 0 1 0 0 1 0 0 1 1 1
  ##  [69] 0 1 1 0 0 0 1 1 0 1 0 0 1 0 1 1 1 0 1 1 1 1 1 1 1 1 0 1 0 0 1 1 1 1
  ## [103] 0 1 1 1 0 0 1 0 0 1 0 0 1 1 0 1 1 1 1 0 0 0 1 1 1 1 0 1 1 0 1 1 1 1
  ## [137] 1 0 1 1 1 0 0 1 0 1 1 1 0 1 1 1 0 0 1 1 1 1 1 1 0 0
  ## 
  ## $weights[[134]]
  ##   [1] 0 1 1 1 0 1 0 1 0 1 1 1 1 0 1 1 1 1 1 1 1 1 1 0 1 0 1 0 1 0 0 1 0 0
  ##  [35] 0 0 0 1 1 1 0 0 0 0 0 1 1 1 1 1 1 1 0 0 1 1 1 0 1 1 1 0 0 1 1 1 1 1
  ##  [69] 1 0 1 1 1 1 1 0 1 0 1 1 0 1 0 1 1 0 1 0 1 1 0 0 1 0 1 1 1 1 0 0 0 1
  ## [103] 0 1 1 0 1 0 0 0 1 1 1 1 0 1 0 0 1 1 1 1 1 0 0 1 0 1 0 0 1 1 0 0 1 0
  ## [137] 0 0 0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 0 0 1 1 1 0
  ## 
  ## $weights[[135]]
  ##   [1] 1 0 1 0 1 1 1 0 0 0 0 1 1 1 1 1 1 0 1 1 1 1 0 0 1 0 1 1 1 1 1 1 1 0
  ##  [35] 0 0 0 1 0 1 1 1 1 0 1 0 0 0 1 0 0 1 0 0 1 1 0 1 1 1 0 1 1 1 1 1 0 1
  ##  [69] 0 0 1 1 1 1 1 0 1 0 1 0 1 0 0 1 0 1 0 1 1 1 1 1 0 1 1 1 1 1 1 1 0 1
  ## [103] 0 1 0 0 1 0 1 0 0 0 1 0 1 1 0 1 1 1 1 0 1 1 1 1 0 0 1 1 1 1 1 1 0 1
  ## [137] 0 1 1 1 1 1 0 0 1 0 1 1 0 1 1 0 1 1 1 0 0 1 1 1 0 0
  ## 
  ## $weights[[136]]
  ##   [1] 0 1 0 0 0 0 0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 0 0 1 0 1 1 0 1 1 1 1 1 0
  ##  [35] 1 0 1 1 1 0 1 1 1 1 1 1 0 0 1 1 1 1 1 1 1 1 0 0 1 1 1 0 0 1 1 0 0 1
  ##  [69] 0 0 1 1 0 0 0 1 1 0 1 1 0 1 1 0 1 1 0 0 1 1 1 1 0 1 0 1 1 1 1 0 1 1
  ## [103] 1 1 0 1 1 0 0 1 0 0 0 1 1 0 0 1 1 0 0 1 0 1 0 1 0 1 0 1 1 0 1 0 0 1
  ## [137] 1 1 1 1 0 1 1 1 1 0 0 1 1 1 0 0 1 0 1 1 1 1 0 0 1 0
  ## 
  ## $weights[[137]]
  ##   [1] 1 1 1 1 0 0 1 0 1 0 1 1 1 1 0 1 1 1 1 1 0 1 1 1 1 0 1 1 1 0 0 1 1 0
  ##  [35] 0 1 1 1 1 1 0 1 0 1 0 0 0 0 1 1 1 0 0 0 0 1 1 0 1 1 0 0 0 1 1 1 1 0
  ##  [69] 1 1 1 1 0 0 1 1 1 1 0 1 1 1 1 1 0 0 1 1 0 0 1 1 1 0 1 0 1 1 0 1 1 0
  ## [103] 1 0 1 1 0 1 1 1 1 0 1 1 1 1 1 0 1 1 0 0 1 1 1 1 0 0 1 0 1 1 0 0 1 1
  ## [137] 0 0 1 1 0 1 1 1 1 1 1 0 1 1 0 1 0 0 0 1 1 1 0 0 0 0
  ## 
  ## $weights[[138]]
  ##   [1] 0 1 0 1 1 1 0 1 0 0 1 1 1 1 1 0 0 0 1 0 1 1 1 0 0 1 0 1 1 1 0 0 1 0
  ##  [35] 0 1 1 0 1 0 0 0 1 1 0 0 1 1 0 0 0 1 1 1 1 1 1 0 1 1 0 0 0 1 1 1 1 0
  ##  [69] 0 0 1 1 1 1 0 1 1 1 1 1 1 0 1 1 0 1 0 1 1 0 0 0 1 1 1 1 0 1 1 0 1 1
  ## [103] 1 1 1 0 0 1 1 1 1 0 1 0 1 1 1 1 1 1 0 1 1 1 1 0 1 1 1 1 1 1 0 0 1 1
  ## [137] 0 0 0 1 1 1 1 1 0 0 1 1 1 1 0 0 0 0 0 1 1 1 1 1 0 1
  ## 
  ## $weights[[139]]
  ##   [1] 1 1 1 1 0 0 0 1 1 0 1 0 0 1 1 1 1 1 1 0 0 0 0 1 0 1 1 1 1 1 0 1 0 1
  ##  [35] 1 0 0 1 0 1 0 1 1 1 0 0 1 1 0 0 1 1 0 0 1 0 1 1 1 1 1 1 0 0 1 0 1 0
  ##  [69] 1 1 0 0 1 0 1 1 0 0 1 1 0 1 1 1 0 0 0 1 1 0 1 1 0 0 1 1 1 0 1 0 1 0
  ## [103] 1 1 1 1 1 1 0 1 1 1 1 1 1 1 1 1 0 1 1 0 1 0 1 1 1 1 1 1 1 0 1 1 1 0
  ## [137] 1 1 1 0 0 0 1 0 1 1 0 0 1 1 1 0 0 1 1 0 1 1 1 1 0 0
  ## 
  ## $weights[[140]]
  ##   [1] 1 0 1 1 0 1 0 1 1 1 1 1 1 1 0 0 1 0 0 1 1 0 1 1 0 0 1 1 0 1 1 1 0 1
  ##  [35] 0 0 1 1 1 0 1 1 1 0 1 0 1 1 0 0 0 0 1 1 0 1 1 0 1 1 0 1 1 1 1 0 0 1
  ##  [69] 0 1 1 1 1 0 1 0 0 1 1 1 0 1 1 1 1 0 1 0 1 0 0 1 1 1 1 0 1 0 1 1 0 1
  ## [103] 0 1 1 1 1 1 0 1 1 1 0 1 1 1 1 0 1 1 1 0 0 0 1 1 1 1 1 1 0 1 0 1 0 0
  ## [137] 0 1 1 0 0 1 1 0 1 0 1 0 0 1 1 0 1 1 1 1 1 0 1 0 1 0
  ## 
  ## $weights[[141]]
  ##   [1] 1 1 1 0 1 1 0 1 0 0 1 1 0 0 1 1 1 1 1 0 0 1 1 0 0 1 1 1 0 0 0 1 1 0
  ##  [35] 1 1 0 1 0 1 0 1 0 0 1 0 1 1 1 1 0 1 0 1 1 1 1 0 0 1 0 0 1 0 0 1 0 1
  ##  [69] 1 0 1 1 0 1 1 1 0 0 1 0 0 1 0 0 0 1 1 1 1 1 0 1 1 1 1 1 0 1 0 0 1 1
  ## [103] 0 1 1 0 1 1 1 1 0 1 0 1 0 1 1 0 1 1 1 1 1 1 1 1 1 1 1 0 1 1 0 1 1 1
  ## [137] 1 0 0 0 1 0 1 0 1 0 1 1 1 1 1 0 1 0 0 1 0 1 1 1 1 1
  ## 
  ## $weights[[142]]
  ##   [1] 1 1 0 1 0 1 0 0 0 1 1 1 0 0 0 1 1 1 1 0 0 1 1 1 0 0 1 1 0 1 0 0 1 0
  ##  [35] 0 1 1 1 1 0 1 1 0 0 1 0 1 1 1 1 1 0 0 1 0 0 0 0 0 1 1 1 1 1 1 1 1 1
  ##  [69] 0 0 1 1 1 0 1 0 1 1 1 1 1 1 1 1 0 1 1 1 0 0 1 1 1 1 0 0 0 1 1 1 0 1
  ## [103] 0 0 1 1 1 0 1 1 0 0 1 1 1 1 1 1 0 1 1 1 0 0 0 0 1 1 1 0 1 1 0 1 1 0
  ## [137] 1 0 1 1 1 0 1 1 1 1 1 0 0 1 0 1 0 1 1 1 0 1 1 1 1 0
  ## 
  ## $weights[[143]]
  ##   [1] 1 0 1 1 1 0 1 1 0 1 1 1 0 1 1 0 1 1 1 1 1 1 1 1 1 0 0 0 0 1 0 1 1 0
  ##  [35] 1 0 1 0 1 1 1 1 0 1 0 0 1 1 0 1 1 1 1 1 0 0 0 0 0 0 1 1 1 1 1 0 1 0
  ##  [69] 1 0 1 0 1 0 1 1 1 0 1 1 0 0 0 0 1 1 1 1 0 0 0 1 0 0 0 0 1 0 1 1 1 0
  ## [103] 0 1 1 0 0 1 0 1 1 1 1 0 1 1 1 0 0 1 0 1 1 0 1 1 1 1 1 1 0 1 1 1 1 0
  ## [137] 1 1 0 1 1 1 1 0 0 1 1 1 0 0 1 1 1 1 1 1 0 0 1 1 1 1
  ## 
  ## $weights[[144]]
  ##   [1] 1 1 1 1 1 1 1 1 1 1 1 0 1 0 1 0 1 0 1 1 0 0 0 0 1 1 1 0 0 1 0 0 1 1
  ##  [35] 0 1 1 0 1 0 1 1 1 0 0 1 1 1 1 0 1 0 1 1 0 1 1 0 1 1 1 1 1 1 1 1 0 1
  ##  [69] 0 1 1 1 1 1 0 1 1 1 1 1 1 1 0 0 0 1 0 1 0 1 1 1 0 0 0 1 1 1 1 1 1 0
  ## [103] 1 1 1 0 0 1 0 0 0 1 1 0 1 0 0 0 1 1 1 1 1 1 1 0 0 0 1 0 1 0 0 0 0 0
  ## [137] 1 0 1 1 1 0 0 1 1 0 0 0 1 0 1 1 1 1 0 1 1 1 1 0 1 1
  ## 
  ## $weights[[145]]
  ##   [1] 0 1 1 1 0 1 0 1 0 0 0 0 1 1 1 1 0 1 1 1 0 0 1 0 1 1 1 0 1 0 0 1 0 1
  ##  [35] 1 1 0 1 0 1 1 0 1 1 1 1 1 1 0 1 1 1 0 0 1 0 0 1 0 1 0 0 1 1 0 0 1 0
  ##  [69] 0 0 1 1 1 0 1 1 0 0 0 0 1 0 1 1 0 1 0 0 0 0 1 0 1 0 1 1 1 1 1 1 1 0
  ## [103] 1 1 0 0 1 1 1 1 1 1 1 0 1 1 1 1 1 1 0 1 0 1 1 1 1 1 0 0 1 0 1 1 1 0
  ## [137] 1 1 0 1 1 1 0 1 1 1 1 0 1 0 1 0 1 0 1 1 1 1 1 1 1 1
  ## 
  ## $weights[[146]]
  ##   [1] 0 1 1 1 0 1 0 1 1 1 1 0 1 0 0 1 0 1 1 1 0 1 1 1 1 0 0 1 0 0 1 1 1 0
  ##  [35] 0 0 1 1 1 1 1 0 1 1 1 0 1 1 0 1 1 1 0 1 0 1 1 1 1 1 1 0 1 1 1 0 0 1
  ##  [69] 0 1 0 0 0 1 0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 0 0 1 1 0 1 0 1 1 1 0 1
  ## [103] 1 0 1 1 0 1 1 1 1 1 0 0 1 0 0 1 0 0 1 1 1 0 1 0 1 1 0 0 1 1 0 1 0 1
  ## [137] 1 0 0 0 1 0 0 0 0 1 1 1 1 0 1 0 1 1 0 0 1 1 1 0 0 1
  ## 
  ## $weights[[147]]
  ##   [1] 1 1 1 1 1 1 0 0 1 0 1 0 1 0 0 0 0 1 0 1 1 1 0 0 1 0 1 1 0 1 0 1 0 0
  ##  [35] 1 1 0 0 0 1 1 1 1 1 1 1 1 1 0 1 0 1 0 1 1 1 1 1 1 0 1 0 0 1 1 0 1 0
  ##  [69] 1 0 1 1 1 0 0 1 1 0 1 0 1 1 0 0 1 0 1 1 1 1 0 0 0 1 1 1 0 0 1 0 1 1
  ## [103] 1 1 1 0 0 1 1 0 1 1 1 1 1 0 0 1 1 0 0 1 0 0 0 0 0 1 1 1 1 1 1 1 1 0
  ## [137] 1 1 1 1 0 0 1 1 1 1 1 1 1 0 1 1 0 1 1 1 1 0 1 1 0 1
  ## 
  ## $weights[[148]]
  ##   [1] 0 1 1 0 1 1 1 1 1 1 1 1 0 0 1 1 0 1 1 0 1 1 0 0 0 1 1 1 1 1 0 1 1 1
  ##  [35] 1 1 0 1 0 0 0 0 1 0 0 1 0 1 1 1 0 0 0 0 1 0 1 0 1 1 1 1 1 1 1 0 0 1
  ##  [69] 1 1 0 0 1 0 1 0 1 0 1 1 0 0 1 1 0 0 1 1 1 1 0 1 1 1 0 1 1 1 1 0 1 0
  ## [103] 1 0 0 0 1 1 0 1 1 1 1 0 0 1 1 1 1 0 0 0 0 1 1 1 1 1 0 1 1 1 0 1 1 0
  ## [137] 0 1 1 1 1 0 1 1 1 1 0 0 1 0 1 1 0 0 1 1 1 1 1 0 1 1
  ## 
  ## $weights[[149]]
  ##   [1] 1 1 1 1 1 0 0 1 0 1 1 1 1 0 0 0 1 1 0 0 1 0 1 0 1 0 1 1 0 1 1 0 1 1
  ##  [35] 0 0 1 0 1 0 0 0 1 0 1 1 0 1 1 1 0 1 1 0 1 1 1 0 0 1 1 0 0 1 0 1 1 1
  ##  [69] 1 1 0 0 0 1 1 1 1 1 1 0 1 1 1 1 1 1 1 0 0 1 0 1 1 0 1 0 1 0 1 1 1 0
  ## [103] 1 1 0 0 1 0 1 1 1 1 1 1 1 0 1 1 0 1 1 1 0 0 0 1 1 0 1 1 0 1 1 1 0 1
  ## [137] 1 0 1 1 1 1 0 1 0 1 0 0 0 1 1 1 1 1 1 1 0 1 0 1 0 0
  ## 
  ## $weights[[150]]
  ##   [1] 0 1 0 1 1 1 1 1 1 0 1 0 1 1 1 1 1 1 1 0 1 1 1 1 1 1 0 1 1 1 1 1 1 0
  ##  [35] 0 1 0 1 0 0 1 0 1 0 0 1 1 0 0 1 1 1 0 1 0 0 1 1 0 1 1 0 1 1 0 1 0 1
  ##  [69] 0 1 0 1 1 1 1 1 0 1 1 0 0 0 1 1 1 1 0 1 1 0 1 0 1 0 0 1 0 1 1 1 1 1
  ## [103] 1 1 1 1 1 1 0 0 1 1 0 1 1 0 1 1 0 0 0 1 0 1 1 1 1 1 1 1 1 1 0 0 1 0
  ## [137] 0 0 0 0 0 1 1 0 0 0 0 1 0 1 1 1 0 1 1 1 0 1 0 1 0 1
  ## 
  ## $weights[[151]]
  ##   [1] 1 0 1 1 0 0 0 0 1 1 1 1 1 0 1 0 1 0 1 1 1 0 0 1 1 0 0 1 0 1 1 0 0 1
  ##  [35] 0 1 1 1 0 1 0 1 0 1 1 1 0 1 1 0 0 1 1 1 1 1 1 0 1 1 0 0 1 1 0 1 1 1
  ##  [69] 0 1 0 1 1 0 1 0 1 1 1 1 0 1 0 0 1 1 1 0 1 1 1 0 1 0 1 1 1 0 0 0 1 0
  ## [103] 1 0 0 0 0 1 1 1 1 0 0 1 1 1 1 1 1 0 1 1 0 1 1 0 1 1 0 1 1 0 1 0 1 1
  ## [137] 0 1 1 1 1 1 1 0 1 0 0 1 1 1 1 1 1 0 1 0 1 0 1 1 0 1
  ## 
  ## $weights[[152]]
  ##   [1] 1 0 0 1 1 1 1 1 0 0 1 1 0 0 0 1 0 1 1 1 0 1 0 1 0 0 1 0 0 0 0 0 0 1
  ##  [35] 1 0 1 1 1 0 1 0 1 0 0 1 1 1 1 1 1 1 1 0 1 1 1 1 0 1 1 1 0 1 0 1 0 1
  ##  [69] 1 1 1 0 0 0 0 1 1 0 0 1 0 1 1 0 1 1 1 1 0 1 1 1 1 0 1 1 1 1 0 1 1 1
  ## [103] 0 1 0 1 1 0 0 1 1 0 0 0 1 0 1 0 1 1 1 1 1 0 1 1 1 1 0 0 1 0 1 1 1 1
  ## [137] 1 1 1 1 1 0 1 0 0 0 1 1 1 1 0 1 1 1 1 1 1 1 0 1 0 0
  ## 
  ## $weights[[153]]
  ##   [1] 1 1 1 0 1 1 0 0 0 1 1 1 0 1 0 1 0 0 1 1 0 0 1 1 1 0 1 1 1 1 1 1 1 1
  ##  [35] 1 1 1 1 0 0 0 1 1 0 1 0 0 1 0 0 0 1 0 1 1 0 0 0 0 1 0 1 0 1 1 1 0 1
  ##  [69] 0 1 1 0 1 0 1 1 1 0 1 1 1 1 1 1 1 0 1 1 1 0 0 0 1 1 0 1 1 1 1 1 0 1
  ## [103] 0 0 1 1 0 1 0 1 1 0 0 0 1 1 1 1 1 1 0 1 0 0 1 0 0 0 0 1 1 1 1 0 1 1
  ## [137] 1 1 1 1 0 1 0 1 0 1 1 1 0 1 0 1 1 0 1 1 1 1 0 1 1 1
  ## 
  ## $weights[[154]]
  ##   [1] 0 1 1 1 0 1 1 0 0 0 1 0 1 0 0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 0 1 1 1
  ##  [35] 0 0 1 1 0 1 1 0 1 0 1 0 0 1 1 0 0 0 1 1 1 0 1 1 1 1 1 0 1 0 1 1 1 0
  ##  [69] 0 0 1 1 1 1 0 0 1 0 1 0 1 1 1 1 1 0 1 0 1 1 1 1 0 1 1 1 0 0 1 1 1 0
  ## [103] 1 1 1 1 1 0 0 1 1 0 1 1 1 0 1 0 1 0 0 1 1 1 0 1 0 0 1 1 0 0 0 1 1 1
  ## [137] 1 0 0 0 1 1 1 0 0 0 1 1 0 1 1 1 0 0 0 1 1 0 1 1 0 1
  ## 
  ## $weights[[155]]
  ##   [1] 0 1 0 1 1 1 0 0 1 1 1 1 1 1 1 1 1 1 1 0 1 1 1 1 1 0 0 0 0 1 1 0 0 0
  ##  [35] 0 1 0 0 1 1 1 1 1 1 1 0 0 0 1 1 0 1 0 1 1 1 1 1 1 1 1 0 1 1 1 1 0 1
  ##  [69] 1 0 1 1 1 1 0 1 0 1 1 1 0 0 0 0 0 1 0 0 1 1 1 0 0 1 1 1 1 1 0 0 1 0
  ## [103] 0 1 1 0 0 0 1 0 0 1 0 1 1 0 1 1 1 1 0 1 0 0 1 1 1 1 1 1 0 0 0 1 0 0
  ## [137] 1 1 1 1 1 0 0 0 1 1 1 0 1 1 1 1 0 1 0 1 1 1 1 0 1 1
  ## 
  ## $weights[[156]]
  ##   [1] 1 0 0 1 1 1 1 1 1 1 0 1 1 1 0 0 1 0 0 1 0 1 1 0 1 0 0 1 0 0 1 0 1 0
  ##  [35] 1 1 0 1 1 1 0 1 1 0 1 0 1 1 1 1 0 1 1 1 0 1 1 0 0 0 0 0 1 1 0 1 1 0
  ##  [69] 0 1 1 1 1 1 0 1 1 0 1 1 0 1 0 1 0 0 1 1 1 1 1 0 1 1 0 1 0 0 0 1 1 1
  ## [103] 1 1 1 0 0 1 0 1 1 1 1 1 1 0 1 1 1 0 0 1 0 1 0 1 0 0 1 1 1 1 1 1 1 1
  ## [137] 0 0 1 1 0 1 1 1 0 1 1 0 1 0 0 1 0 1 1 1 1 1 0 1 0 1
  ## 
  ## $weights[[157]]
  ##   [1] 0 1 1 1 1 1 1 0 0 1 1 1 1 1 1 1 0 1 1 0 0 1 0 1 1 0 1 0 1 1 1 0 1 1
  ##  [35] 1 1 1 1 1 1 0 1 1 0 0 1 0 0 1 0 1 1 0 0 0 1 1 0 0 0 0 1 1 0 1 1 1 1
  ##  [69] 0 1 0 1 1 0 1 0 1 1 1 0 1 0 0 1 1 0 1 0 0 1 0 1 1 1 1 1 1 1 1 1 1 0
  ## [103] 0 0 0 1 1 1 1 0 0 1 1 1 1 0 0 0 1 0 1 0 1 0 1 1 1 0 1 1 0 0 0 1 1 1
  ## [137] 1 1 1 0 1 0 1 1 1 0 1 1 1 0 0 1 1 0 1 0 1 1 1 0 1 0
  ## 
  ## $weights[[158]]
  ##   [1] 1 0 1 1 1 1 0 1 0 1 1 1 1 1 1 1 1 1 1 1 0 1 1 1 1 1 0 1 0 1 1 1 1 0
  ##  [35] 1 1 1 0 1 1 0 1 0 1 0 0 0 0 1 0 0 0 0 0 1 1 0 1 1 0 0 1 0 0 0 0 0 1
  ##  [69] 1 1 1 0 0 1 0 1 1 0 1 0 0 0 1 1 1 1 1 1 1 1 1 1 1 1 0 0 1 1 0 1 0 1
  ## [103] 0 0 1 0 1 1 1 1 1 1 1 1 1 1 1 1 1 0 0 1 0 1 0 1 1 1 0 1 1 1 0 0 0 0
  ## [137] 0 1 0 1 1 0 0 1 1 1 0 0 0 0 1 0 1 1 1 1 0 1 1 1 1 1
  ## 
  ## $weights[[159]]
  ##   [1] 1 1 1 0 0 0 1 1 0 0 0 1 0 1 1 1 0 1 1 1 1 1 1 1 0 1 0 1 1 0 1 1 1 0
  ##  [35] 1 1 1 0 0 0 1 0 1 1 0 0 0 0 1 1 1 0 1 1 0 0 1 1 1 1 1 1 1 0 0 1 0 0
  ##  [69] 1 0 0 0 1 1 1 1 0 1 1 0 1 1 0 1 1 1 1 1 1 1 1 0 1 1 0 1 0 1 1 0 1 1
  ## [103] 1 0 1 0 0 0 1 0 0 1 1 1 1 0 1 1 1 1 1 1 1 0 1 0 0 1 0 1 0 1 0 1 1 0
  ## [137] 1 1 0 0 0 1 1 0 1 0 1 1 1 0 1 1 1 0 1 0 1 0 1 1 1 1
  ## 
  ## $weights[[160]]
  ##   [1] 1 1 1 0 1 0 0 1 0 1 1 1 1 0 1 1 0 1 1 0 1 0 1 0 1 0 1 1 0 1 0 0 0 1
  ##  [35] 1 1 1 1 1 1 0 1 1 1 1 1 1 0 1 1 1 0 0 0 1 1 1 0 1 0 1 1 1 1 0 1 1 0
  ##  [69] 1 0 0 0 0 1 0 1 0 1 1 0 1 1 1 1 1 1 1 1 0 1 0 0 0 0 1 1 1 1 0 1 1 1
  ## [103] 0 1 1 1 1 1 0 0 0 0 0 0 1 0 0 0 0 1 1 0 0 1 1 1 0 0 0 1 1 1 0 0 1 1
  ## [137] 1 1 0 1 1 1 1 1 0 1 1 0 0 1 1 1 1 1 1 0 1 1 0 1 1 1
  ## 
  ## $weights[[161]]
  ##   [1] 1 0 0 1 1 1 1 1 1 1 1 0 0 0 1 1 1 0 0 1 0 1 1 1 1 0 1 0 0 1 1 1 0 1
  ##  [35] 1 0 1 1 1 1 1 1 1 1 1 0 0 1 1 0 1 0 0 1 1 1 0 0 1 1 0 0 0 0 1 1 0 0
  ##  [69] 0 0 1 1 1 1 1 1 1 1 0 1 1 1 1 1 1 1 1 0 1 0 1 0 1 1 1 1 1 0 1 1 0 1
  ## [103] 1 0 0 1 1 1 1 0 0 1 1 1 0 1 0 1 0 0 1 0 0 1 1 0 1 0 1 1 1 1 0 0 1 1
  ## [137] 1 1 1 0 1 0 1 0 1 0 1 0 0 0 0 0 1 0 1 1 1 1 1 0 1 0
  ## 
  ## $weights[[162]]
  ##   [1] 1 1 1 0 1 1 1 0 1 0 0 0 0 1 0 1 1 1 1 1 0 1 0 1 1 0 0 1 1 1 1 0 1 1
  ##  [35] 1 1 1 0 0 0 0 1 1 1 1 0 1 1 0 1 0 1 1 0 1 0 0 0 1 0 1 1 0 1 1 0 1 0
  ##  [69] 0 0 0 1 1 0 0 1 1 0 1 1 1 0 1 1 0 1 1 1 0 0 0 1 1 0 1 0 0 1 1 1 1 1
  ## [103] 0 1 1 0 1 1 0 1 0 0 1 0 1 1 1 0 0 1 1 1 1 1 0 1 1 1 1 1 0 1 1 0 1 0
  ## [137] 1 0 1 1 1 0 1 1 1 0 0 0 0 1 1 0 1 1 1 1 1 1 1 1 1 1
  ## 
  ## $weights[[163]]
  ##   [1] 1 0 1 1 0 0 1 1 0 0 1 1 1 0 0 1 0 0 1 1 0 1 1 1 1 1 1 1 0 0 1 1 0 1
  ##  [35] 0 1 1 1 1 1 1 0 1 1 1 0 0 0 0 1 0 1 1 0 1 1 1 1 1 1 1 0 1 0 1 1 0 1
  ##  [69] 1 1 0 1 0 1 0 0 1 1 0 1 0 1 1 1 0 1 0 1 1 1 0 0 1 1 1 0 0 1 1 1 1 1
  ## [103] 1 1 1 0 1 1 0 0 0 0 1 0 0 0 1 0 1 1 0 0 1 1 0 0 1 0 1 1 0 1 1 0 1 1
  ## [137] 1 1 1 0 1 1 1 0 1 1 0 1 1 0 0 1 1 1 1 0 0 1 1 1 1 0
  ## 
  ## $weights[[164]]
  ##   [1] 1 0 1 1 0 1 1 1 1 0 1 0 0 1 1 1 0 1 1 1 0 1 0 1 0 0 0 1 1 1 1 0 1 1
  ##  [35] 0 0 0 1 0 0 0 1 0 1 1 0 0 1 1 1 0 1 0 1 1 1 1 1 1 0 1 1 1 1 0 1 1 1
  ##  [69] 1 1 1 1 1 0 1 0 0 0 0 0 1 0 1 1 1 1 1 1 1 0 0 0 1 1 0 1 1 1 1 0 1 1
  ## [103] 1 0 0 1 1 0 1 1 1 0 1 1 1 0 0 1 0 0 1 1 1 1 1 0 0 1 1 1 1 1 1 1 0 0
  ## [137] 1 1 0 0 1 0 1 1 1 1 1 0 0 1 1 0 1 1 1 0 0 1 0 0 0 1
  ## 
  ## $weights[[165]]
  ##   [1] 0 1 1 0 1 0 0 1 0 1 0 1 1 0 1 1 0 1 1 1 1 0 1 0 1 1 0 0 0 1 1 1 1 0
  ##  [35] 1 1 0 1 0 1 1 0 0 1 1 1 0 0 0 1 1 1 0 0 0 1 0 0 0 1 0 0 0 1 1 1 0 1
  ##  [69] 1 1 0 1 0 1 0 1 1 1 1 0 1 0 1 0 1 0 1 0 1 0 1 1 0 1 0 1 0 1 1 0 1 1
  ## [103] 1 0 1 0 0 1 1 1 0 1 1 0 1 1 1 1 1 0 1 1 0 0 1 0 1 1 0 1 1 1 1 1 1 1
  ## [137] 1 1 0 0 1 1 1 1 0 1 0 0 1 1 1 1 1 0 1 1 1 1 1 1 1 1
  ## 
  ## $weights[[166]]
  ##   [1] 0 1 1 1 1 0 1 1 1 0 0 1 1 1 0 0 1 1 1 0 0 1 0 1 1 1 1 1 1 1 1 0 1 1
  ##  [35] 1 0 1 0 1 1 1 1 1 1 1 0 1 0 0 1 0 0 1 1 1 0 1 1 1 0 1 0 1 1 0 0 1 1
  ##  [69] 0 1 0 1 1 1 1 1 0 1 0 1 1 1 1 0 0 1 0 0 0 0 1 0 1 0 1 0 1 0 0 0 1 0
  ## [103] 1 1 0 1 1 1 1 1 1 1 0 0 1 0 0 1 1 0 1 1 0 1 0 0 1 1 1 0 1 1 1 1 0 1
  ## [137] 1 0 1 0 0 1 0 0 1 0 0 0 1 1 1 1 1 0 1 0 1 1 1 1 1 1
  ## 
  ## $weights[[167]]
  ##   [1] 1 1 1 1 0 1 1 1 1 0 0 0 1 1 0 0 1 1 1 0 1 1 0 1 0 1 1 1 1 0 0 0 0 1
  ##  [35] 0 1 1 1 1 1 0 0 1 0 1 0 1 1 0 0 1 0 1 1 1 1 0 1 1 1 0 1 1 0 1 1 1 0
  ##  [69] 0 1 1 0 0 0 1 1 1 1 0 1 1 1 0 1 1 1 0 1 1 0 1 1 0 1 1 0 0 1 1 1 0 1
  ## [103] 1 1 0 1 0 0 1 0 0 0 0 0 1 1 1 0 1 0 1 1 0 1 0 0 1 1 1 0 0 1 0 1 1 1
  ## [137] 1 1 1 0 1 0 1 0 0 0 0 1 1 1 0 1 1 1 1 1 1 1 1 1 1 1
  ## 
  ## $weights[[168]]
  ##   [1] 1 1 1 0 1 0 1 1 1 1 0 1 1 1 0 1 1 1 1 1 1 0 0 0 0 1 1 1 0 1 0 0 0 1
  ##  [35] 0 1 1 1 0 1 0 0 0 0 0 1 0 1 1 1 0 1 0 0 0 1 0 1 1 1 0 0 1 0 0 0 1 1
  ##  [69] 0 0 1 1 1 1 0 0 1 1 1 1 1 1 1 1 1 0 0 1 0 0 1 0 1 1 0 1 0 0 0 1 1 1
  ## [103] 1 1 1 1 1 1 1 0 1 1 1 0 1 0 1 0 1 0 0 0 1 0 1 1 0 1 1 0 1 1 1 1 0 1
  ## [137] 1 0 1 1 1 0 0 0 1 1 1 1 1 1 1 0 1 1 1 1 0 1 1 1 1 1
  ## 
  ## $weights[[169]]
  ##   [1] 0 1 0 1 0 1 0 1 1 0 1 0 1 0 1 1 1 1 1 1 0 1 1 0 0 1 1 0 1 1 1 1 1 1
  ##  [35] 0 1 0 0 1 1 1 1 1 1 0 1 1 0 1 0 1 1 1 1 0 1 0 0 1 0 0 1 1 1 0 1 1 0
  ##  [69] 1 0 0 1 0 1 0 1 0 1 0 0 1 1 0 1 1 0 0 1 1 1 0 0 1 1 1 1 1 1 1 0 1 1
  ## [103] 1 0 0 0 1 0 0 0 1 0 1 1 1 1 1 0 1 0 1 1 1 1 1 0 1 1 1 1 0 1 0 1 0 0
  ## [137] 1 0 0 1 0 1 1 1 0 1 1 0 1 0 1 0 1 1 0 0 1 1 1 1 1 1
  ## 
  ## $weights[[170]]
  ##   [1] 1 1 1 0 0 1 1 1 1 0 1 0 0 0 1 1 0 1 0 0 1 1 1 1 1 0 1 0 1 1 0 0 0 1
  ##  [35] 0 0 1 1 1 1 1 0 1 0 1 1 0 1 1 1 0 1 1 1 0 0 1 1 1 1 1 1 1 1 0 1 0 1
  ##  [69] 1 0 1 1 1 1 1 1 1 1 0 1 0 1 1 1 0 0 1 1 1 1 1 1 0 1 1 0 1 1 1 0 1 1
  ## [103] 0 0 0 1 1 1 0 1 0 0 0 1 1 1 1 0 0 1 1 1 0 0 1 0 1 0 0 1 0 1 1 1 1 0
  ## [137] 0 0 0 1 0 1 0 0 0 1 1 1 0 1 1 1 1 1 1 0 0 1 1 0 1 0
  ## 
  ## $weights[[171]]
  ##   [1] 0 1 1 1 1 1 0 1 0 0 0 1 1 0 1 1 0 0 1 0 1 1 1 1 0 1 1 1 1 1 1 1 0 1
  ##  [35] 1 1 1 1 0 0 0 0 1 1 0 1 0 0 1 1 1 1 1 1 0 1 0 1 1 1 1 0 1 0 1 0 0 0
  ##  [69] 1 1 0 0 0 0 1 1 1 0 0 0 1 1 1 1 1 1 1 1 1 1 1 0 1 1 1 1 1 1 0 0 0 1
  ## [103] 0 0 1 1 1 0 0 1 0 1 0 0 1 1 0 0 1 0 0 1 0 1 1 0 1 1 1 1 1 1 0 1 1 0
  ## [137] 1 0 1 0 0 1 0 1 0 1 1 1 1 1 1 0 1 1 0 1 1 1 0 0 1 1
  ## 
  ## $weights[[172]]
  ##   [1] 1 0 1 0 1 1 1 1 1 1 1 1 0 1 0 0 1 1 1 0 0 1 1 1 1 0 1 1 1 0 1 1 1 0
  ##  [35] 1 1 1 0 1 1 0 0 0 0 1 1 1 1 1 0 0 1 1 1 0 1 0 0 1 1 0 1 1 0 1 1 1 0
  ##  [69] 1 1 1 1 1 0 0 0 0 1 1 0 1 0 0 0 0 1 1 1 0 1 1 0 1 0 1 1 0 1 1 1 1 1
  ## [103] 1 1 1 0 0 1 1 0 1 0 0 1 0 0 1 0 0 1 0 0 0 0 1 1 1 0 0 0 0 0 1 1 1 1
  ## [137] 1 1 1 1 1 0 1 1 0 1 0 1 1 1 1 0 1 1 1 1 1 1 1 0 1 0
  ## 
  ## $weights[[173]]
  ##   [1] 0 0 1 0 1 1 1 0 0 1 0 1 1 0 1 0 1 1 0 1 1 0 1 1 1 1 1 0 1 0 1 0 1 1
  ##  [35] 1 1 0 0 1 1 0 1 1 0 1 0 1 1 0 1 0 1 1 1 1 1 0 1 0 0 0 1 1 1 1 0 1 0
  ##  [69] 0 1 1 0 1 1 1 0 0 1 1 0 1 0 1 1 1 1 1 1 1 1 0 0 1 1 1 1 1 0 1 1 1 0
  ## [103] 1 1 1 0 1 1 1 0 1 0 1 1 1 0 1 0 0 0 0 0 1 0 0 1 1 1 1 1 1 0 0 1 0 1
  ## [137] 0 0 1 1 0 0 1 0 1 1 1 1 1 1 1 1 0 1 1 1 1 0 0 1 0 0
  ## 
  ## $weights[[174]]
  ##   [1] 0 0 0 0 1 1 1 1 1 0 1 1 1 0 0 1 0 1 1 0 1 1 1 1 0 1 1 1 0 1 1 1 0 1
  ##  [35] 0 0 1 0 1 0 0 1 1 1 0 1 0 1 0 1 1 1 0 0 1 1 1 1 0 0 1 1 1 0 1 1 1 1
  ##  [69] 0 0 1 0 1 0 1 1 1 1 0 0 1 1 0 0 0 1 1 0 1 1 1 1 0 1 0 0 1 1 1 1 0 1
  ## [103] 1 1 1 1 1 1 1 1 0 1 1 0 0 1 1 1 1 0 0 0 1 0 1 0 0 1 1 1 1 1 1 1 0 0
  ## [137] 0 1 1 1 0 1 1 0 0 1 0 0 1 0 1 1 1 0 1 0 1 1 0 1 1 1
  ## 
  ## $weights[[175]]
  ##   [1] 0 0 1 1 0 0 0 1 1 1 1 0 0 1 0 0 1 0 1 1 1 1 1 1 0 1 1 1 0 1 0 1 1 1
  ##  [35] 1 0 1 1 1 1 1 0 1 0 1 0 1 0 0 0 1 0 1 0 1 0 0 1 0 1 0 0 1 1 1 1 1 1
  ##  [69] 0 1 0 1 1 0 1 1 1 1 1 0 1 1 0 0 0 1 0 1 0 1 1 1 0 0 1 1 1 1 1 1 1 0
  ## [103] 1 0 1 1 0 1 1 0 1 0 0 1 1 1 0 0 1 1 1 1 1 0 1 1 1 1 0 1 1 1 1 0 1 1
  ## [137] 1 0 0 1 1 1 1 1 0 0 0 0 1 1 0 0 1 0 1 0 0 1 1 1 1 1
  ## 
  ## $weights[[176]]
  ##   [1] 1 1 0 0 0 1 0 1 1 1 1 1 1 0 1 1 1 1 1 0 0 1 1 1 1 1 1 0 1 1 0 1 1 1
  ##  [35] 0 1 0 1 0 0 0 1 1 1 1 0 1 1 1 0 1 1 1 1 0 0 0 1 1 1 0 0 1 1 1 0 1 1
  ##  [69] 0 1 1 0 1 1 0 0 1 1 0 1 0 1 0 1 1 0 1 1 1 0 0 0 1 1 0 1 0 1 0 1 0 0
  ## [103] 1 0 1 1 0 1 1 0 1 1 0 1 1 0 0 0 0 0 1 0 1 1 1 0 1 1 1 1 1 0 1 1 1 0
  ## [137] 1 1 1 1 0 1 0 1 0 1 1 1 1 1 0 1 1 0 0 0 1 0 0 1 1 1
  ## 
  ## $weights[[177]]
  ##   [1] 1 0 1 1 1 1 1 0 1 0 1 1 0 0 1 0 1 1 0 1 0 1 0 0 0 1 0 1 1 0 0 0 0 1
  ##  [35] 0 1 1 1 1 0 1 0 1 0 1 0 0 0 1 1 0 1 1 1 0 0 1 1 1 1 1 0 1 1 0 1 0 0
  ##  [69] 0 1 1 1 1 1 0 1 1 0 0 1 1 1 1 0 1 1 0 1 1 1 1 0 1 0 1 0 1 0 1 1 0 0
  ## [103] 1 0 1 1 1 0 0 1 1 1 0 1 0 1 0 1 1 1 1 1 0 1 1 1 0 1 0 1 1 0 1 1 1 1
  ## [137] 0 1 1 1 1 1 0 1 0 1 0 1 1 1 1 1 1 0 1 1 1 1 0 0 0 1
  ## 
  ## $weights[[178]]
  ##   [1] 1 1 1 1 0 0 1 1 1 0 0 0 1 0 0 0 1 0 1 1 1 1 1 1 1 0 0 0 1 1 1 0 1 1
  ##  [35] 1 0 0 1 0 0 1 1 0 1 1 0 1 0 0 0 1 1 0 1 0 0 1 1 0 1 1 1 1 1 1 1 1 1
  ##  [69] 0 1 1 1 1 0 1 1 1 0 0 0 1 0 1 0 0 0 0 1 0 1 1 1 1 1 0 1 1 1 1 1 1 0
  ## [103] 1 1 1 0 1 1 0 0 0 1 1 1 0 1 1 1 1 1 0 0 1 1 1 1 1 1 1 1 1 1 0 0 1 1
  ## [137] 1 1 1 1 0 0 0 0 1 0 1 0 1 1 1 1 1 0 0 0 0 0 1 1 0 1
  ## 
  ## $weights[[179]]
  ##   [1] 0 1 0 1 1 1 1 1 0 1 1 1 1 0 1 1 1 1 1 0 1 0 0 0 1 1 1 0 0 0 1 1 0 0
  ##  [35] 1 1 0 1 1 1 0 0 0 1 0 0 1 1 0 0 0 0 1 1 1 1 0 1 1 1 0 0 1 1 1 1 1 1
  ##  [69] 1 0 1 0 0 0 1 0 0 1 1 1 1 1 0 0 0 0 0 0 1 1 1 0 1 1 1 1 1 0 1 0 1 1
  ## [103] 0 1 1 0 0 1 1 0 1 0 1 1 1 1 0 1 1 1 1 1 1 1 1 1 1 1 1 0 1 1 0 1 1 0
  ## [137] 1 1 1 0 0 0 1 1 0 0 1 0 1 1 1 1 1 1 1 0 0 1 0 1 1 0
  ## 
  ## $weights[[180]]
  ##   [1] 0 1 1 1 1 0 0 0 0 0 1 0 1 0 0 1 0 1 0 1 1 1 1 0 1 1 1 0 0 1 1 0 0 0
  ##  [35] 0 1 0 1 0 1 0 1 0 1 0 0 1 1 1 0 1 1 0 1 1 1 1 1 0 1 1 0 0 1 1 1 1 1
  ##  [69] 0 1 1 1 0 1 1 1 1 0 1 1 1 1 0 1 0 1 1 0 0 1 0 1 0 0 0 1 0 0 1 1 0 1
  ## [103] 0 1 1 0 1 1 1 1 0 0 0 1 0 0 1 1 0 1 1 1 1 1 1 1 0 1 1 1 1 1 1 1 1 1
  ## [137] 1 1 1 1 1 0 0 1 0 0 1 1 0 1 1 1 1 1 1 1 1 0 1 1 0 0
  ## 
  ## $weights[[181]]
  ##   [1] 0 1 1 1 1 1 1 0 1 0 1 1 0 0 1 1 0 1 0 1 1 1 0 1 0 0 1 1 1 0 0 1 0 1
  ##  [35] 1 1 0 1 0 1 1 1 1 1 1 1 1 1 1 1 0 0 1 0 1 1 1 1 1 1 1 1 0 0 0 1 1 0
  ##  [69] 0 1 0 0 0 1 1 1 0 0 1 1 0 0 0 1 1 1 0 1 1 1 0 1 1 0 1 1 0 1 0 0 0 0
  ## [103] 1 0 1 1 0 0 1 1 1 0 0 0 1 1 1 0 0 1 0 1 0 1 1 1 1 1 0 1 1 1 0 1 0 1
  ## [137] 1 0 1 1 1 0 1 1 0 1 0 1 1 0 0 1 0 1 1 1 0 1 1 1 1 1
  ## 
  ## $weights[[182]]
  ##   [1] 1 1 0 1 0 1 1 0 1 1 0 0 1 1 1 1 1 1 1 1 0 0 1 1 1 1 0 1 0 1 1 0 1 0
  ##  [35] 1 0 1 0 0 0 1 0 1 1 1 1 1 1 0 1 1 1 0 1 0 1 1 1 0 0 1 0 0 1 1 1 1 1
  ##  [69] 1 1 0 0 1 0 1 1 0 1 1 1 1 0 0 1 0 1 1 1 1 0 1 1 1 0 0 0 1 0 0 1 0 0
  ## [103] 0 1 1 1 1 0 1 1 1 0 1 1 1 1 1 1 1 1 1 1 0 0 1 1 0 0 1 1 0 1 1 1 0 1
  ## [137] 1 1 0 1 0 0 0 0 1 1 1 0 1 0 1 1 1 0 0 1 0 0 1 0 0 1
  ## 
  ## $weights[[183]]
  ##   [1] 1 0 1 0 1 1 1 1 0 0 0 0 0 1 1 1 1 1 1 1 0 0 1 0 0 0 0 1 1 1 1 1 1 1
  ##  [35] 0 1 0 1 1 0 1 0 1 1 0 1 1 1 0 1 0 1 0 1 1 1 1 1 1 1 1 0 1 0 0 0 1 1
  ##  [69] 1 1 0 1 1 0 1 1 1 1 1 1 0 1 0 1 0 0 1 0 0 1 1 1 1 0 1 0 1 1 1 1 1 1
  ## [103] 1 1 0 0 0 1 0 1 1 1 0 0 0 1 1 1 1 1 1 0 0 1 0 0 1 1 1 1 1 1 0 1 1 0
  ## [137] 1 1 0 1 1 1 1 1 0 1 0 0 0 1 0 1 0 0 1 0 0 1 1 0 0 1
  ## 
  ## $weights[[184]]
  ##   [1] 1 1 1 1 0 1 0 0 1 0 0 1 1 0 1 1 1 1 1 1 0 1 0 0 0 1 1 1 1 1 1 0 0 1
  ##  [35] 0 1 1 1 1 1 0 1 1 1 0 0 0 1 1 1 1 0 0 0 1 0 0 0 0 0 0 1 1 1 1 0 1 1
  ##  [69] 0 0 1 1 0 1 1 0 1 1 1 1 0 1 1 1 1 0 0 0 1 1 0 0 0 1 1 0 0 1 1 0 0 1
  ## [103] 0 0 1 1 0 1 0 1 1 1 0 0 1 1 1 1 1 1 1 0 1 1 1 0 1 1 1 1 1 1 0 1 0 0
  ## [137] 1 1 1 1 1 1 1 0 1 0 1 0 1 0 1 0 1 1 0 1 1 1 1 1 0 1
  ## 
  ## $weights[[185]]
  ##   [1] 1 1 0 1 1 1 1 1 0 0 1 1 1 0 1 1 1 1 0 1 1 0 1 1 1 1 0 0 0 1 0 1 1 0
  ##  [35] 0 0 1 0 1 1 1 1 1 1 1 1 1 0 0 0 0 0 1 0 1 0 1 1 1 0 1 1 0 1 1 0 1 1
  ##  [69] 1 1 0 1 1 0 1 0 1 1 1 1 0 0 0 1 0 0 0 0 0 0 1 1 0 1 0 1 1 1 1 1 0 1
  ## [103] 1 1 0 0 1 1 0 1 1 1 1 0 1 0 1 1 1 1 0 1 1 1 0 1 1 1 1 1 1 1 0 1 1 1
  ## [137] 1 0 0 1 0 0 0 0 1 1 0 1 1 0 1 0 1 0 1 0 1 1 0 1 0 1
  ## 
  ## $weights[[186]]
  ##   [1] 1 0 1 0 1 0 1 0 1 0 1 1 1 1 0 0 0 0 0 1 1 0 0 0 1 1 1 1 1 0 1 0 1 1
  ##  [35] 1 1 1 0 1 1 0 1 1 1 1 1 0 1 1 1 1 1 0 1 1 1 0 1 1 1 0 0 0 1 1 1 1 1
  ##  [69] 0 0 0 0 0 1 1 1 1 1 1 1 1 0 1 0 1 1 0 1 0 1 1 0 0 1 1 1 1 0 1 1 0 1
  ## [103] 0 1 1 1 1 1 1 0 1 0 1 1 0 1 1 0 1 1 1 0 1 1 1 1 0 1 0 0 1 1 0 0 0 1
  ## [137] 1 1 1 0 0 1 0 1 1 0 0 1 0 0 0 1 1 0 0 0 1 1 1 1 0 1
  ## 
  ## $weights[[187]]
  ##   [1] 0 1 0 1 1 1 0 0 1 1 0 1 0 1 1 0 1 0 0 1 1 1 1 1 1 1 0 1 1 1 1 0 1 0
  ##  [35] 0 0 0 1 1 1 1 0 1 0 1 1 0 0 0 1 0 1 1 0 1 1 1 0 0 0 0 0 1 1 1 1 0 0
  ##  [69] 0 1 1 1 1 1 1 1 0 1 1 0 0 0 1 0 0 1 1 1 0 1 1 1 1 0 1 0 0 0 1 1 1 1
  ## [103] 1 1 1 0 1 0 1 1 0 0 1 1 1 1 1 1 0 0 0 0 0 1 1 1 1 1 0 1 1 0 1 1 1 1
  ## [137] 1 1 0 0 1 0 1 1 1 1 1 1 1 0 1 1 0 1 0 1 0 1 1 0 1 1
  ## 
  ## $weights[[188]]
  ##   [1] 1 0 0 0 1 0 0 1 1 0 0 1 1 0 0 1 1 0 1 1 1 1 1 0 1 1 1 1 1 1 1 1 0 0
  ##  [35] 0 0 1 1 0 0 1 1 0 0 1 0 1 0 1 1 0 1 0 0 0 1 1 1 0 0 0 1 0 0 1 1 1 1
  ##  [69] 1 0 1 0 1 1 1 1 1 0 0 1 1 1 1 1 1 0 1 1 1 1 1 1 1 1 1 0 1 0 0 1 1 1
  ## [103] 0 1 0 0 0 1 1 1 1 1 1 1 1 0 1 1 0 0 0 1 1 1 1 0 0 1 1 0 1 1 0 1 1 1
  ## [137] 1 1 1 1 0 1 1 1 1 0 1 0 0 1 1 1 0 0 1 1 1 0 1 0 0 0
  ## 
  ## $weights[[189]]
  ##   [1] 0 1 1 0 1 1 0 1 0 1 0 1 0 0 1 0 1 1 0 1 1 1 0 0 0 1 1 1 1 1 0 1 1 0
  ##  [35] 0 1 0 1 1 1 1 1 1 0 1 1 0 1 0 0 1 1 1 1 0 1 0 1 1 1 1 1 0 0 1 1 0 1
  ##  [69] 0 1 1 0 1 1 1 0 1 1 1 1 0 1 0 1 1 0 1 1 1 1 1 1 0 0 0 1 0 1 1 1 1 1
  ## [103] 1 1 1 0 1 1 0 1 0 1 0 1 1 1 0 1 1 0 0 1 0 1 1 1 1 1 1 1 1 1 0 1 0 1
  ## [137] 1 0 1 0 1 0 0 0 0 1 1 0 0 1 0 1 0 1 0 1 0 0 0 0 1 1
  ## 
  ## $weights[[190]]
  ##   [1] 1 0 0 0 1 1 1 0 0 0 1 0 1 1 1 1 1 0 1 1 1 1 1 0 1 0 1 0 0 1 1 1 0 1
  ##  [35] 1 0 0 1 1 0 1 0 0 1 1 1 1 0 0 1 1 1 0 1 1 1 0 0 1 1 0 1 0 0 1 0 0 1
  ##  [69] 1 1 1 1 1 1 1 1 1 1 1 0 1 0 0 1 0 0 1 0 0 0 0 1 1 0 1 1 0 1 1 1 0 0
  ## [103] 1 1 1 1 1 1 1 1 1 0 0 1 1 0 1 1 1 0 0 0 1 1 0 1 0 0 0 1 1 0 1 1 1 0
  ## [137] 1 0 1 1 1 1 1 1 1 1 1 1 0 1 1 1 1 1 0 0 0 1 0 1 0 1
  ## 
  ## $weights[[191]]
  ##   [1] 1 0 1 0 1 0 1 0 1 1 0 1 0 0 1 1 0 1 1 1 0 1 0 1 1 1 0 0 0 1 1 0 1 0
  ##  [35] 0 0 1 1 0 1 1 0 1 1 0 0 0 1 1 1 1 1 1 1 1 1 0 1 1 0 0 0 1 1 1 0 1 1
  ##  [69] 1 0 1 0 1 0 0 0 1 1 1 1 1 1 0 0 1 1 0 1 0 0 1 1 0 1 1 1 1 0 1 1 1 1
  ## [103] 0 1 0 1 0 0 1 1 1 1 1 0 1 0 1 0 1 1 1 1 0 1 1 1 0 0 1 0 0 1 1 1 0 1
  ## [137] 0 0 1 1 1 1 0 1 1 1 1 1 1 0 1 0 1 1 1 1 0 1 1 0 0 1
  ## 
  ## $weights[[192]]
  ##   [1] 1 0 1 0 0 1 1 0 1 0 1 1 1 1 1 1 1 1 1 1 0 1 1 0 1 1 0 1 0 1 1 0 0 1
  ##  [35] 1 0 1 1 0 0 1 1 0 1 0 1 0 1 1 1 1 1 0 1 1 1 1 1 1 0 0 0 1 0 0 0 1 1
  ##  [69] 0 0 1 1 1 1 0 1 1 0 1 0 1 0 1 1 1 0 0 1 0 0 1 1 1 1 0 1 1 0 0 0 1 1
  ## [103] 0 0 1 0 0 1 1 1 0 0 1 0 0 0 1 0 1 1 1 1 0 1 1 1 1 1 1 1 0 0 0 1 1 1
  ## [137] 1 1 0 1 1 1 1 1 0 1 1 0 0 1 1 1 0 0 1 1 0 1 1 1 1 0
  ## 
  ## $weights[[193]]
  ##   [1] 1 0 0 1 1 1 1 1 0 0 0 1 0 0 1 1 0 0 1 0 0 1 0 0 0 0 1 1 1 1 1 0 0 1
  ##  [35] 1 1 0 1 1 1 0 1 0 0 0 1 1 0 1 0 1 0 1 0 1 1 0 0 0 1 1 1 0 1 1 1 1 1
  ##  [69] 1 1 1 1 1 0 0 1 1 0 1 0 1 0 0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 0 1 0
  ## [103] 0 0 1 1 1 1 0 1 1 1 1 0 1 1 1 0 1 1 1 1 1 1 1 0 1 1 1 1 0 1 1 0 1 1
  ## [137] 1 0 1 1 0 1 0 1 1 0 0 0 0 0 0 1 1 1 0 0 0 1 0 0 1 1
  ## 
  ## $weights[[194]]
  ##   [1] 0 1 1 1 0 0 0 1 1 1 1 1 1 0 0 1 0 0 0 1 1 1 1 0 1 1 0 1 1 0 1 0 0 0
  ##  [35] 0 1 1 1 1 1 1 1 0 0 1 1 1 1 1 0 0 1 1 1 1 1 0 1 1 1 1 1 1 1 0 1 1 0
  ##  [69] 1 1 1 1 1 0 1 0 0 0 1 1 1 1 1 0 0 0 1 1 1 1 1 0 0 0 0 1 0 0 1 0 0 0
  ## [103] 0 0 0 1 1 1 1 1 0 0 0 0 1 0 0 0 1 1 1 1 0 0 1 0 1 1 1 1 1 1 1 0 0 1
  ## [137] 1 0 1 1 1 1 1 0 1 1 1 0 0 1 1 1 1 1 1 1 1 0 1 1 0 1
  ## 
  ## $weights[[195]]
  ##   [1] 1 0 1 1 0 0 1 1 0 1 1 0 0 1 1 1 1 1 1 1 1 0 0 1 0 1 1 0 1 1 0 1 0 0
  ##  [35] 1 1 1 1 1 1 1 1 1 0 1 1 0 1 1 1 1 1 1 1 0 1 1 1 0 0 1 1 1 1 1 1 1 1
  ##  [69] 0 0 1 1 1 0 1 1 0 1 1 1 0 0 1 1 0 1 0 0 1 0 0 1 0 1 1 0 1 0 1 1 1 1
  ## [103] 0 1 0 1 1 0 1 0 1 0 1 1 1 0 0 1 0 0 0 0 1 0 1 1 1 1 0 0 0 0 0 1 1 1
  ## [137] 0 0 0 0 0 1 1 1 1 1 1 1 1 0 1 1 0 1 0 0 1 0 1 1 1 0
  ## 
  ## $weights[[196]]
  ##   [1] 1 1 1 1 0 1 1 1 1 0 0 1 1 1 1 1 0 1 0 1 1 1 1 1 0 1 1 0 0 0 1 1 0 1
  ##  [35] 1 1 1 1 0 1 1 0 1 1 0 0 1 0 1 1 0 1 0 1 0 1 0 1 1 0 1 1 0 0 0 1 0 1
  ##  [69] 1 0 0 1 0 1 1 1 0 1 1 0 1 1 1 1 1 0 1 0 0 1 0 1 1 0 1 1 1 1 1 1 0 0
  ## [103] 1 0 0 1 0 1 1 0 1 1 0 0 1 1 1 1 0 1 0 1 1 0 0 0 0 1 1 1 0 1 1 0 0 1
  ## [137] 0 0 1 0 0 1 1 0 1 1 1 1 1 1 1 1 1 1 0 1 0 1 0 0 1 1
  ## 
  ## $weights[[197]]
  ##   [1] 0 1 1 1 1 0 1 1 1 1 1 0 0 1 1 1 1 1 0 1 1 1 1 0 0 1 0 1 1 0 1 1 0 1
  ##  [35] 1 1 0 1 1 1 1 1 1 1 0 0 1 1 0 1 1 0 0 1 1 1 1 0 0 0 1 1 1 0 0 0 1 1
  ##  [69] 0 0 1 0 0 0 1 0 0 0 0 0 1 1 0 1 0 0 1 1 1 1 0 1 0 1 1 1 0 1 1 0 1 1
  ## [103] 1 1 1 1 0 1 1 1 0 1 0 1 0 1 1 1 0 0 0 1 1 1 1 0 1 1 1 0 1 0 1 0 1 1
  ## [137] 1 1 1 1 0 0 1 0 1 1 1 0 0 1 1 1 1 1 0 1 0 1 1 0 0 0
  ## 
  ## $weights[[198]]
  ##   [1] 1 1 1 1 0 1 1 1 0 1 0 1 1 1 1 1 1 0 1 0 1 0 0 1 0 0 0 1 0 1 1 0 1 0
  ##  [35] 0 1 1 1 1 1 1 1 0 1 1 1 1 1 1 1 1 0 1 1 0 0 1 1 0 0 1 0 1 1 0 1 0 1
  ##  [69] 1 1 1 1 1 1 0 1 1 1 1 1 0 1 1 1 1 1 1 1 0 1 0 1 0 1 1 0 0 0 1 1 0 0
  ## [103] 1 1 1 0 1 1 0 0 0 1 1 0 1 1 1 0 0 1 1 1 0 0 1 1 1 0 1 1 1 0 1 0 1 0
  ## [137] 0 1 1 1 1 0 0 0 1 1 0 0 0 1 1 0 0 0 1 1 0 0 1 1 0 0
  ## 
  ## $weights[[199]]
  ##   [1] 1 0 0 1 1 1 0 1 1 1 0 0 0 0 1 0 1 1 1 1 1 1 1 1 0 0 0 0 1 1 1 1 0 1
  ##  [35] 1 0 0 0 1 1 1 1 1 1 1 0 1 1 0 1 1 0 1 0 1 0 0 1 1 1 1 1 1 1 0 1 0 0
  ##  [69] 0 1 1 0 1 0 1 1 1 1 0 1 0 1 0 1 1 1 0 0 0 1 0 1 0 0 1 1 1 1 0 1 0 1
  ## [103] 1 1 1 1 1 1 1 0 1 1 1 1 1 1 1 1 0 1 1 1 0 1 1 0 1 0 1 1 0 0 1 1 0 0
  ## [137] 1 0 0 1 1 0 1 1 0 1 0 0 0 1 1 1 1 1 1 1 1 0 0 0 0 0
  ## 
  ## $weights[[200]]
  ##   [1] 1 1 1 0 1 0 1 0 1 1 1 0 0 0 0 1 1 1 0 0 1 1 1 1 1 1 1 0 1 1 1 1 1 1
  ##  [35] 1 1 0 0 1 1 1 1 1 0 1 0 0 1 1 0 0 1 1 1 0 0 1 1 1 0 0 1 1 1 0 1 1 0
  ##  [69] 1 0 0 0 1 0 1 0 1 0 1 0 1 0 0 1 0 1 1 0 0 1 1 1 1 1 1 1 1 1 0 1 0 1
  ## [103] 1 0 0 1 1 0 1 1 0 1 1 1 1 1 1 1 1 1 1 0 0 0 1 1 0 0 0 0 1 0 1 0 1 0
  ## [137] 1 0 1 0 0 1 0 1 1 1 1 1 1 0 0 1 1 1 0 0 1 1 0 1 1 1
  ## 
  ## 
  ## $fitted
  ##     idx (response)
  ## 1     1        218
  ## 2     2        166
  ## 3     3        170
  ## 4     4        567
  ## 5     5        613
  ## 6     6        707
  ## 7     7         61
  ## 8     8        301
  ## 9     9         81
  ## 10   10        371
  ## 11   11        520
  ## 12   12        574
  ## 13   13        118
  ## 14   14        390
  ## 15   15         12
  ## 16   16        473
  ## 17   17         26
  ## 18   18        107
  ## 19   19         53
  ## 20   20        814
  ## 21   21       965+
  ## 22   22         93
  ## 23   23        731
  ## 24   24        460
  ## 25   25        153
  ## 26   26        433
  ## 27   27        583
  ## 28   28         95
  ## 29   29        303
  ## 30   30        519
  ## 31   31        643
  ## 32   32        765
  ## 33   33         53
  ## 34   34        246
  ## 35   35        689
  ## 36   36          5
  ## 37   37        687
  ## 38   38        345
  ## 39   39        444
  ## 40   40        223
  ## 41   41         60
  ## 42   42        163
  ## 43   43         65
  ## 44   44       821+
  ## 45   45        428
  ## 46   46        230
  ## 47   47       840+
  ## 48   48        305
  ## 49   49         11
  ## 50   50        226
  ## 51   51        426
  ## 52   52        705
  ## 53   53        363
  ## 54   54        176
  ## 55   55        791
  ## 56   56         95
  ## 57   57       196+
  ## 58   58        167
  ## 59   59       806+
  ## 60   60        284
  ## 61   61        641
  ## 62   62        147
  ## 63   63       740+
  ## 64   64        163
  ## 65   65        655
  ## 66   66         88
  ## 67   67        245
  ## 68   68         30
  ## 69   69        477
  ## 70   70       559+
  ## 71   71        450
  ## 72   72        156
  ## 73   73       529+
  ## 74   74        429
  ## 75   75        351
  ## 76   76         15
  ## 77   77        181
  ## 78   78        283
  ## 79   79         13
  ## 80   80        212
  ## 81   81        524
  ## 82   82        288
  ## 83   83        363
  ## 84   84        199
  ## 85   85        550
  ## 86   86         54
  ## 87   87        558
  ## 88   88        207
  ## 89   89         92
  ## 90   90         60
  ## 91   91       551+
  ## 92   92        293
  ## 93   93        353
  ## 94   94        267
  ## 95   95       511+
  ## 96   96        457
  ## 97   97        337
  ## 98   98        201
  ## 99   99       404+
  ## 100 100        222
  ## 101 101         62
  ## 102 102       458+
  ## 103 103        353
  ## 104 104        163
  ## 105 105         31
  ## 106 106        229
  ## 107 107        156
  ## 108 108        291
  ## 109 109        179
  ## 110 110       376+
  ## 111 111       384+
  ## 112 112        268
  ## 113 113       292+
  ## 114 114        142
  ## 115 115       413+
  ## 116 116       266+
  ## 117 117        320
  ## 118 118        181
  ## 119 119        285
  ## 120 120       301+
  ## 121 121        348
  ## 122 122        197
  ## 123 123       382+
  ## 124 124       303+
  ## 125 125       296+
  ## 126 126        180
  ## 127 127        145
  ## 128 128       269+
  ## 129 129       300+
  ## 130 130       284+
  ## 131 131       292+
  ## 132 132       332+
  ## 133 133        285
  ## 134 134       259+
  ## 135 135        110
  ## 136 136        286
  ## 137 137        270
  ## 138 138       225+
  ## 139 139        269
  ## 140 140       225+
  ## 141 141       243+
  ## 142 142       276+
  ## 143 143        135
  ## 144 144         79
  ## 145 145         59
  ## 146 146       240+
  ## 147 147       202+
  ## 148 148       235+
  ## 149 149        239
  ## 150 150       252+
  ## 151 151       221+
  ## 152 152       185+
  ## 153 153       222+
  ## 154 154        183
  ## 155 155       211+
  ## 156 156       175+
  ## 157 157       197+
  ## 158 158       203+
  ## 159 159       191+
  ## 160 160       105+
  ## 161 161       174+
  ## 162 162       177+
  ## 
  ## $terms
  ## Surv(time, status) ~ inst + age + sex + ph.ecog + ph.karno + 
  ##     pat.karno + meal.cal + wt.loss
  ## attr(,"variables")
  ## list(Surv(time, status), inst, age, sex, ph.ecog, ph.karno, pat.karno, 
  ##     meal.cal, wt.loss)
  ## attr(,"factors")
  ##                    inst age sex ph.ecog ph.karno pat.karno meal.cal
  ## Surv(time, status)    0   0   0       0        0         0        0
  ## inst                  1   0   0       0        0         0        0
  ## age                   0   1   0       0        0         0        0
  ## sex                   0   0   1       0        0         0        0
  ## ph.ecog               0   0   0       1        0         0        0
  ## ph.karno              0   0   0       0        1         0        0
  ## pat.karno             0   0   0       0        0         1        0
  ## meal.cal              0   0   0       0        0         0        1
  ## wt.loss               0   0   0       0        0         0        0
  ##                    wt.loss
  ## Surv(time, status)       0
  ## inst                     0
  ## age                      0
  ## sex                      0
  ## ph.ecog                  0
  ## ph.karno                 0
  ## pat.karno                0
  ## meal.cal                 0
  ## wt.loss                  1
  ## attr(,"term.labels")
  ## [1] "inst"      "age"       "sex"       "ph.ecog"   "ph.karno" 
  ## [6] "pat.karno" "meal.cal"  "wt.loss"  
  ## attr(,"order")
  ## [1] 1 1 1 1 1 1 1 1
  ## attr(,"intercept")
  ## [1] 1
  ## attr(,"response")
  ## [1] 1
  ## attr(,".Environment")
  ## <environment: 0x563ee5083770>
  ## attr(,"Formula_with_dot")
  ## Surv(time, status) ~ .
  ## <environment: 0x563ee5083770>
  ## attr(,"Formula_without_dot")
  ## Surv(time, status) ~ inst + age + sex + ph.ecog + ph.karno + 
  ##     pat.karno + meal.cal + wt.loss
  ## <environment: 0x563ee5083770>
  ## attr(,"dot")
  ## [1] "sequential"
  ## 
  ## $info
  ## $info$call
  ## partykit::cforest(formula = formula, data = data, weights = weights, 
  ##     control = partykit::ctree_control(minsplit = 20L, maxdepth = Inf, 
  ##         teststat = "quadratic", testtype = "Univariate", mincriterion = 0, 
  ##         saveinfo = FALSE), ntree = 200, mtry = 3)
  ## 
  ## $info$control
  ## $info$control$criterion
  ## [1] "p.value"
  ## 
  ## $info$control$logmincriterion
  ## [1] -Inf
  ## 
  ## $info$control$minsplit
  ## [1] 20
  ## 
  ## $info$control$minbucket
  ## [1] 7
  ## 
  ## $info$control$minprob
  ## [1] 0.01
  ## 
  ## $info$control$maxvar
  ## [1] Inf
  ## 
  ## $info$control$stump
  ## [1] FALSE
  ## 
  ## $info$control$nmax
  ##  yx   z 
  ## Inf Inf 
  ## 
  ## $info$control$lookahead
  ## [1] FALSE
  ## 
  ## $info$control$mtry
  ## [1] 3
  ## 
  ## $info$control$maxdepth
  ## [1] Inf
  ## 
  ## $info$control$multiway
  ## [1] FALSE
  ## 
  ## $info$control$splittry
  ## [1] 2
  ## 
  ## $info$control$maxsurrogate
  ## [1] 0
  ## 
  ## $info$control$numsurrogate
  ## [1] FALSE
  ## 
  ## $info$control$majority
  ## [1] FALSE
  ## 
  ## $info$control$caseweights
  ## [1] TRUE
  ## 
  ## $info$control$applyfun
  ## function (X, FUN, ...) 
  ## {
  ##     FUN <- match.fun(FUN)
  ##     if (!is.vector(X) || is.object(X)) 
  ##         X <- as.list(X)
  ##     .Internal(lapply(X, FUN))
  ## }
  ## <bytecode: 0x563ed0f23c40>
  ## <environment: namespace:base>
  ## 
  ## $info$control$saveinfo
  ## [1] FALSE
  ## 
  ## $info$control$bonferroni
  ## [1] FALSE
  ## 
  ## $info$control$update
  ## [1] FALSE
  ## 
  ## $info$control$selectfun
  ## function (model, trafo, data, subset, weights, whichvar, ctrl) 
  ## {
  ##     args <- list(...)
  ##     ctrl[names(args)] <- args
  ##     .select(model, trafo, data, subset, weights, whichvar, ctrl, 
  ##         FUN = .ctree_test)
  ## }
  ## <bytecode: 0x563ee343af30>
  ## <environment: 0x563ee124de68>
  ## 
  ## $info$control$splitfun
  ## function (model, trafo, data, subset, weights, whichvar, ctrl) 
  ## {
  ##     args <- list(...)
  ##     ctrl[names(args)] <- args
  ##     .split(model, trafo, data, subset, weights, whichvar, ctrl, 
  ##         FUN = .ctree_test)
  ## }
  ## <bytecode: 0x563ee343d160>
  ## <environment: 0x563ee1248bf8>
  ## 
  ## $info$control$svselectfun
  ## function (model, trafo, data, subset, weights, whichvar, ctrl) 
  ## {
  ##     args <- list(...)
  ##     ctrl[names(args)] <- args
  ##     .select(model, trafo, data, subset, weights, whichvar, ctrl, 
  ##         FUN = .ctree_test)
  ## }
  ## <bytecode: 0x563ee343af30>
  ## <environment: 0x563ee1248cd8>
  ## 
  ## $info$control$svsplitfun
  ## function (model, trafo, data, subset, weights, whichvar, ctrl) 
  ## {
  ##     args <- list(...)
  ##     ctrl[names(args)] <- args
  ##     .split(model, trafo, data, subset, weights, whichvar, ctrl, 
  ##         FUN = .ctree_test)
  ## }
  ## <bytecode: 0x563ee343d160>
  ## <environment: 0x563ee1248d48>
  ## 
  ## $info$control$teststat
  ## [1] "quadratic"
  ## 
  ## $info$control$splitstat
  ## [1] "quadratic"
  ## 
  ## $info$control$splittest
  ## [1] FALSE
  ## 
  ## $info$control$pargs
  ## $maxpts
  ## [1] 25000
  ## 
  ## $abseps
  ## [1] 0.001
  ## 
  ## $releps
  ## [1] 0
  ## 
  ## attr(,"class")
  ## [1] "GenzBretz"
  ## 
  ## $info$control$testtype
  ## [1] "Univariate"
  ## 
  ## $info$control$nresample
  ## [1] 9999
  ## 
  ## $info$control$tol
  ## [1] 1.490116e-08
  ## 
  ## $info$control$intersplit
  ## [1] FALSE
  ## 
  ## $info$control$MIA
  ## [1] FALSE
  ## 
  ## 
  ## 
  ## $trafo
  ## function (subset, weights, info, estfun, object, ...) 
  ## list(estfun = Y, unweighted = TRUE)
  ## <bytecode: 0x563ee01e0830>
  ## <environment: 0x563ee123b988>
  ## 
  ## $predictf
  ## ~inst + age + sex + ph.ecog + ph.karno + pat.karno + meal.cal + 
  ##     wt.loss
  ## attr(,"variables")
  ## list(inst, age, sex, ph.ecog, ph.karno, pat.karno, meal.cal, 
  ##     wt.loss)
  ## attr(,"factors")
  ##           inst age sex ph.ecog ph.karno pat.karno meal.cal wt.loss
  ## inst         1   0   0       0        0         0        0       0
  ## age          0   1   0       0        0         0        0       0
  ## sex          0   0   1       0        0         0        0       0
  ## ph.ecog      0   0   0       1        0         0        0       0
  ## ph.karno     0   0   0       0        1         0        0       0
  ## pat.karno    0   0   0       0        0         1        0       0
  ## meal.cal     0   0   0       0        0         0        1       0
  ## wt.loss      0   0   0       0        0         0        0       1
  ## attr(,"term.labels")
  ## [1] "inst"      "age"       "sex"       "ph.ecog"   "ph.karno" 
  ## [6] "pat.karno" "meal.cal"  "wt.loss"  
  ## attr(,"order")
  ## [1] 1 1 1 1 1 1 1 1
  ## attr(,"intercept")
  ## [1] 1
  ## attr(,"response")
  ## [1] 0
  ## attr(,".Environment")
  ## <environment: 0x563ee5083770>
  ## attr(,"Formula_with_dot")
  ## Surv(time, status) ~ .
  ## <environment: 0x563ee5083770>
  ## attr(,"Formula_without_dot")
  ## Surv(time, status) ~ inst + age + sex + ph.ecog + ph.karno + 
  ##     pat.karno + meal.cal + wt.loss
  ## <environment: 0x563ee5083770>
  ## attr(,"dot")
  ## [1] "sequential"
  ## 
  ## attr(,"class")
  ## [1] "cforest"      "constparties" "parties"

The holdout data can be predicted for survival probability at different time points as well as event time.

  predict(
    rf_fit, 
    lung_test, 
    type = "survival", 
    eval_time = c(100, 500, 1000)
  ) %>% 
    slice(1) %>% 
    tidyr::unnest(col = .pred)
  ## # A tibble: 3 × 2
  ##   .eval_time .pred_survival
  ##        <dbl>          <dbl>
  ## 1        100         0.886 
  ## 2        500         0.303 
  ## 3       1000         0.0443
  predict(rf_fit, lung_test, type = "time")
  ## # A tibble: 5 × 1
  ##   .pred_time
  ##        <dbl>
  ## 1        337
  ## 2        267
  ## 3        230
  ## 4        201
  ## 5        226
With the "aorsf" engine

We’ll model the survival of lung cancer patients.

  library(tidymodels)
  library(censored)
  tidymodels_prefer()
  
  data(cancer)
  
  lung <- lung %>% drop_na()
  lung_train <- lung[-c(1:5), ]
  lung_test <- lung[1:5, ]

We can define the model with specific parameters:

  rf_spec <- 
    rand_forest(trees = 200) %>%
    set_engine("aorsf") %>% 
    set_mode("censored regression") 
  rf_spec
  ## Random Forest Model Specification (censored regression)
  ## 
  ## Main Arguments:
  ##   trees = 200
  ## 
  ## Computational engine: aorsf

Now we create the model fit object:

  set.seed(1)
  
  rf_fit <- rf_spec %>% fit(Surv(time, status) ~ ., data = lung_train)
  rf_fit
  ## parsnip model object
  ## 
  ## ---------- Oblique random survival forest
  ## 
  ##      Linear combinations: Accelerated Cox regression
  ##           N observations: 162
  ##                 N events: 278
  ##                  N trees: 200
  ##       N predictors total: 8
  ##    N predictors per node: 3
  ##  Average leaves per tree: 17.175
  ## Min observations in leaf: 5
  ##       Min events in leaf: 1
  ##           OOB stat value: 0.62
  ##            OOB stat type: Harrell's C-index
  ##      Variable importance: anova
  ## 
  ## -----------------------------------------

The holdout data can be predicted for survival probability at different time points as well as event time.

  predict(
    rf_fit, 
    lung_test, 
    type = "survival", 
    eval_time = c(100, 500, 1000)
  ) %>% 
    slice(1) %>% 
    tidyr::unnest(col = .pred)
  ## # A tibble: 3 × 2
  ##   .eval_time .pred_survival
  ##        <dbl>          <dbl>
  ## 1        100         0.917 
  ## 2        500         0.397 
  ## 3       1000         0.0538
  predict(rf_fit, lung_test, type = "time")
  ## # A tibble: 5 × 1
  ##   .pred_time
  ##        <dbl>
  ## 1       397.
  ## 2       277.
  ## 3       240.
  ## 4       228.
  ## 5       226.

survival_reg() models

With the "survival" engine

We’ll model the survival of lung cancer patients.

  library(tidymodels)
  library(censored)
  tidymodels_prefer()
  
  data(cancer)
  
  lung <- lung %>% drop_na()
  lung_train <- lung[-c(1:5), ]
  lung_test <- lung[1:5, ]

We can define the model with specific parameters:

  sr_spec <- 
    survival_reg(dist = "weibull") %>%
    set_engine("survival") %>% 
    set_mode("censored regression") 
  sr_spec
  ## Parametric Survival Regression Model Specification (censored regression)
  ## 
  ## Main Arguments:
  ##   dist = weibull
  ## 
  ## Computational engine: survival

Now we create the model fit object:

  set.seed(1)
  sr_fit <- sr_spec %>% fit(Surv(time, status) ~ ., data = lung_train)
  sr_fit
  ## parsnip model object
  ## 
  ## Call:
  ## survival::survreg(formula = Surv(time, status) ~ ., data = data, 
  ##     dist = ~"weibull", model = TRUE)
  ## 
  ## Coefficients:
  ##   (Intercept)          inst           age           sex       ph.ecog 
  ##  6.2802499155  0.0191302849 -0.0085917372  0.4249655608 -0.5022975982 
  ##      ph.karno     pat.karno      meal.cal       wt.loss 
  ## -0.0085852225  0.0058753359  0.0001003211  0.0127001420 
  ## 
  ## Scale= 0.6902035 
  ## 
  ## Loglik(model)= -795.2   Loglik(intercept only)= -811.4
  ##    Chisq= 32.41 on 8 degrees of freedom, p= 7.85e-05 
  ## n= 162

The holdout data can be predicted for survival probability at different time points as well as event time, linear predictor, quantile, and hazard.

  predict(
    sr_fit, 
    lung_test, 
    type = "survival",
    eval_time = c(100, 500, 1000)
  ) %>% 
    slice(1) %>% 
    tidyr::unnest(col = .pred)
  ## # A tibble: 3 × 2
  ##   .eval_time .pred_survival
  ##        <dbl>          <dbl>
  ## 1        100         0.912 
  ## 2        500         0.386 
  ## 3       1000         0.0742
  predict(sr_fit, lung_test, type = "time")
  ## # A tibble: 5 × 1
  ##   .pred_time
  ##        <dbl>
  ## 1       517.
  ## 2       283.
  ## 3       361.
  ## 4       268.
  ## 5       313.
  predict(sr_fit, lung_test, type = "linear_pred")
  ## # A tibble: 5 × 1
  ##   .pred_linear_pred
  ##               <dbl>
  ## 1              6.25
  ## 2              5.64
  ## 3              5.89
  ## 4              5.59
  ## 5              5.75
  predict(sr_fit, lung_test, type = "quantile") %>% 
    slice(1) %>% 
    tidyr::unnest(col = .pred)
  ## # A tibble: 9 × 2
  ##   .quantile .pred_quantile
  ##       <dbl>          <dbl>
  ## 1       0.1           109.
  ## 2       0.2           184.
  ## 3       0.3           254.
  ## 4       0.4           325.
  ## 5       0.5           401.
  ## 6       0.6           487.
  ## 7       0.7           588.
  ## 8       0.8           718.
  ## 9       0.9           919.
  predict(sr_fit, lung_test, type = "hazard", eval_time = c(100, 500, 1000)) %>% 
    slice(1) %>% 
    tidyr::unnest(col = .pred)
  ## # A tibble: 3 × 2
  ##   .eval_time .pred_hazard
  ##        <dbl>        <dbl>
  ## 1        100      0.00134
  ## 2        500      0.00276
  ## 3       1000      0.00377
With the "flexsurv" engine

We’ll model the survival of lung cancer patients.

  library(tidymodels)
  library(censored)
  tidymodels_prefer()
  
  data(cancer)
  
  lung <- lung %>% drop_na()
  lung_train <- lung[-c(1:5), ]
  lung_test <- lung[1:5, ]

We can define the model with specific parameters:

  sr_spec <- 
    survival_reg(dist = "weibull") %>%
    set_engine("flexsurv") %>% 
    set_mode("censored regression") 
  sr_spec
  ## Parametric Survival Regression Model Specification (censored regression)
  ## 
  ## Main Arguments:
  ##   dist = weibull
  ## 
  ## Computational engine: flexsurv

Now we create the model fit object:

  set.seed(1)
  sr_fit <- sr_spec %>% 
    fit(Surv(time, status) ~ age + sex + ph.ecog, data = lung_train)
  sr_fit
  ## parsnip model object
  ## 
  ## Call:
  ## flexsurv::flexsurvreg(formula = Surv(time, status) ~ age + sex + 
  ##     ph.ecog, data = data, dist = ~"weibull")
  ## 
  ## Estimates: 
  ##          data mean  est        L95%       U95%       se         exp(est) 
  ## shape           NA   1.39e+00   1.21e+00   1.61e+00   1.02e-01         NA
  ## scale           NA   5.74e+02   1.99e+02   1.65e+03   3.10e+02         NA
  ## age       6.24e+01  -9.02e-03  -2.50e-02   6.95e-03   8.15e-03   9.91e-01
  ## sex       1.38e+00   4.02e-01   1.17e-01   6.87e-01   1.45e-01   1.50e+00
  ## ph.ecog   9.51e-01  -3.17e-01  -5.13e-01  -1.21e-01   1.00e-01   7.28e-01
  ##          L95%       U95%     
  ## shape           NA         NA
  ## scale           NA         NA
  ## age       9.75e-01   1.01e+00
  ## sex       1.12e+00   1.99e+00
  ## ph.ecog   5.99e-01   8.86e-01
  ## 
  ## N = 162,  Events: 116,  Censored: 46
  ## Total time at risk: 49401
  ## Log-likelihood = -800.356, df = 5
  ## AIC = 1610.712

The holdout data can be predicted for survival probability at different time points as well as event time, linear predictor, quantile, and hazard.

  predict(
    sr_fit, 
    lung_test, 
    type = "survival",
    eval_time = c(100, 500, 1000)
  ) %>% 
    slice(1) %>% 
    tidyr::unnest(col = .pred)
  ## # A tibble: 3 × 2
  ##   .eval_time .pred_survival
  ##        <dbl>          <dbl>
  ## 1        100         0.889 
  ## 2        500         0.330 
  ## 3       1000         0.0543
  predict(sr_fit, lung_test, type = "time")
  ## # A tibble: 5 × 1
  ##   .pred_time
  ##        <dbl>
  ## 1       424.
  ## 2       341.
  ## 3       292.
  ## 4       336.
  ## 5       327.
  predict(sr_fit, lung_test, type = "linear_pred")
  ## # A tibble: 5 × 1
  ##   .pred_linear_pred
  ##               <dbl>
  ## 1              6.14
  ## 2              5.92
  ## 3              5.77
  ## 4              5.91
  ## 5              5.88
  predict(sr_fit, lung_test, type = "quantile") %>% 
    slice(1) %>% 
    tidyr::unnest(col = .pred)
  ## # A tibble: 9 × 2
  ##   .quantile .pred_quantile
  ##       <dbl>          <dbl>
  ## 1       0.1           92.5
  ## 2       0.2          158. 
  ## 3       0.3          222. 
  ## 4       0.4          287. 
  ## 5       0.5          357. 
  ## 6       0.6          436. 
  ## 7       0.7          531. 
  ## 8       0.8          653. 
  ## 9       0.9          845.
  predict(sr_fit, lung_test, type = "hazard", eval_time = c(100, 500, 1000)) %>% 
    slice(1) %>% 
    tidyr::unnest(col = .pred)
  ## # A tibble: 3 × 2
  ##   .eval_time .pred_hazard
  ##        <dbl>        <dbl>
  ## 1        100      0.00164
  ## 2        500      0.00309
  ## 3       1000      0.00406
With the "flexsurvspline" engine

We’ll model the survival of lung cancer patients.

  library(tidymodels)
  library(censored)
  tidymodels_prefer()
  
  data(cancer)
  
  lung <- lung %>% drop_na()
  lung_train <- lung[-c(1:5), ]
  lung_test <- lung[1:5, ]

We can define the model:

  sr_spec <- 
    survival_reg() %>%
    set_engine("flexsurvspline") %>% 
    set_mode("censored regression") 
  sr_spec
  ## Parametric Survival Regression Model Specification (censored regression)
  ## 
  ## Computational engine: flexsurvspline

Now we create the model fit object:

  set.seed(1)
  sr_fit <- sr_spec %>% 
    fit(Surv(time, status) ~ age + sex + ph.ecog, data = lung_train)
  sr_fit
  ## parsnip model object
  ## 
  ## Call:
  ## flexsurv::flexsurvspline(formula = Surv(time, status) ~ age + 
  ##     sex + ph.ecog, data = data)
  ## 
  ## Estimates: 
  ##          data mean  est        L95%       U95%       se         exp(est) 
  ## gamma0          NA   -8.85681  -10.78595   -6.92767    0.98427         NA
  ## gamma1          NA    1.39431    1.19358    1.59504    0.10241         NA
  ## age       62.41358    0.01258   -0.00968    0.03484    0.01136    1.01266
  ## sex        1.38272   -0.56080   -0.95517   -0.16643    0.20121    0.57075
  ## ph.ecog    0.95062    0.44213    0.17197    0.71230    0.13784    1.55602
  ##          L95%       U95%     
  ## gamma0          NA         NA
  ## gamma1          NA         NA
  ## age        0.99037    1.03545
  ## sex        0.38475    0.84668
  ## ph.ecog    1.18764    2.03867
  ## 
  ## N = 162,  Events: 116,  Censored: 46
  ## Total time at risk: 49401
  ## Log-likelihood = -800.356, df = 5
  ## AIC = 1610.712

The holdout data can be predicted for survival probability at different time points as well as event time, linear predictor, quantile, and hazard.

  predict(
    sr_fit, 
    lung_test, 
    type = "survival",
    eval_time = c(100, 500, 1000)
  ) %>% 
    slice(1) %>% 
    tidyr::unnest(col = .pred)
  ## # A tibble: 3 × 2
  ##   .eval_time .pred_survival
  ##        <dbl>          <dbl>
  ## 1        100         0.889 
  ## 2        500         0.330 
  ## 3       1000         0.0543
  predict(sr_fit, lung_test, type = "time")
  ## # A tibble: 5 × 1
  ##   .pred_time
  ##        <dbl>
  ## 1       424.
  ## 2       341.
  ## 3       292.
  ## 4       336.
  ## 5       327.
  predict(sr_fit, lung_test, type = "linear_pred")
  ## # A tibble: 5 × 1
  ##   .pred_linear_pred
  ##               <dbl>
  ## 1             -8.56
  ## 2             -8.26
  ## 3             -8.04
  ## 4             -8.24
  ## 5             -8.20
  predict(sr_fit, lung_test, type = "quantile") %>% 
    slice(1) %>% 
    tidyr::unnest(col = .pred)
  ## # A tibble: 9 × 2
  ##   .quantile .pred_quantile
  ##       <dbl>          <dbl>
  ## 1       0.1           92.5
  ## 2       0.2          158. 
  ## 3       0.3          222. 
  ## 4       0.4          287. 
  ## 5       0.5          357. 
  ## 6       0.6          436. 
  ## 7       0.7          531. 
  ## 8       0.8          653. 
  ## 9       0.9          845.
  predict(sr_fit, lung_test, type = "hazard", eval_time = c(100, 500, 1000)) %>% 
    slice(1) %>% 
    tidyr::unnest(col = .pred)
  ## # A tibble: 3 × 2
  ##   .eval_time .pred_hazard
  ##        <dbl>        <dbl>
  ## 1        100      0.00164
  ## 2        500      0.00309
  ## 3       1000      0.00406